
Subject: Re: pointer to structures
Posted by John-David T. Smith on Wed, 05 Apr 2000 07:00:00 GMT
View Forum Message <> Reply to Message

"Liam E.Gumley" wrote:
>
> "J.D. Smith" wrote:
>>
>> "Liam E.Gumley" wrote:
>>>
>>> "J.D. Smith" wrote:
>>>> With time, you will get used to these semantics. They seem arcane, but
>>>> eventually it becomes somewhat readable to the experienced eye. Of course, I've
>>>> struggled with statements like:
>>>>
>>>> HEADER=*(*(*self.DR)[sel[i]].HEADER)
>>>
>>> I neglected to provide an example of why simplified pointer and
>>> structure referencing is desirable. Thanks for the help JD!
>>>
>>> ;-)
>>>
>>> Cheers,
>>> Liam.
>>
>> But then you have to ask yourself which is worse, the confusing string above, or
>> the explicit:
>>
>> drs_ptr=self.DR
>> drs=*drs_ptr
>> this=drs[sel[i]]
>> hd_arr_ptr=*this
>> hd=*hd_arr_ptr
>>
>> repeat this about 5000 times throughout your application, and you begin to
>> appreciate the terse form above. Especially if you're passing some part of the
>> nested data to a routine by reference... intermediate variables require you to
>> remember to assign them after use (everybody remember
>> widget_control,stash,set_uvalue=state,/NO_COPY?).
>
> I would not repeat this code 5000 times. I'd find a way to encapsulate
> it in a function where I can include comments and error checking (e.g.
> Is this a valid pointer? Does it point to a defined variable?). In these
> cases I find it much better to create a 'put' and 'get' function pair
> where all the de-referencing is handled inside the function. That way I
> can use the 'put' and 'get' modules all over the place, and if I change
> the way the pointers/structures are nested, I only have to change the
> code in two places (inside the functions).

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3389
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=11470&goto=19540#msg_19540
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=19540
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

The problem with this is code inflation. If you want to manipulate parts of
your data structure in place, you need direct access to a pointer or some other
by reference value. If you choose to pass pointer values to all intermediate
routines, you are in a sense compromising the very data structure encapsulation
you are attempting to achieve. What if later it became a list of pointers?
With the put/set paradigm, you are limited in the ways helper functions can
interact with your data structure, and you are forced to wrap each call:

get,My_Var=mv
do_something,mv
put,My_Var=mv

reminiscent of the example stash variable I gave. This is not necessarily a bad
idea. Especially now that we have _REF_EXTRA so that incorporating overloaded
get/put methods in an object hierarchy is possible. But it yields consistency
at the price of flexibility. Sometimes this is a good tradeoff, perhaps even
more times than most people would be inclined to think. In other situations, a
more carefully designed data structure can give you the procedural flexibility
you need without compromising future design revisions. There is room for both
styles of design in your toolchest.

JD

--
 J.D. Smith |*| WORK: (607) 255-5842
 Cornell University Dept. of Astronomy |*| (607) 255-6263
 304 Space Sciences Bldg. |*| FAX: (607) 255-5875
 Ithaca, NY 14853 |*|

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

