
Subject: Re: multiplication
Posted by John-David T. Smith on Tue, 28 Mar 2000 08:00:00 GMT
View Forum Message <> Reply to Message

James Kuyper wrote:
>
> meron@cars3.uchicago.edu wrote:
>>
>> In article <38E03BDC.868B8396@hotmail.com>, marc <m_schellens@hotmail.com> writes:
>>> Is there a function like TOTAL but for multiplication.
>>> Like the big PI symbol in mathematical notation.
>>> Or this really something for the for loop?
>>>
>>> I.E.
>>>
>>> a=[1,2,3,...]
>>>
>>> result=a[1]*a[2]*a[3]...
>>>
>> if all the elements of a are positive then you can simply do
>>
>> result = exp(total(alog(a)))
> ...
>> If some of the elements are negative, you can still handle it. do
>>
>> dum = where(a lt 0, ndum)
>> sig = (-1)^ndum
>> result = sig*exp(total(alog(abs(a))))
>
> You can't honestly be suggesting that this is a good technique? Ignore
> for a momement what happens if any element of 'a' is 0. That code
> performs two transcendental function evaluations per element of 'a'. IDL
> would have to be very badly engineered (which I suppose is possible),
> for a 'for' loop to execute more slowly than your code.

Only one transcendental is computed for each a, alog(). The exp occurs on the
single value after the total. Results for a 10,000 element random floating
array finely tuned to avoid under or overflow:

Loop Method:

Average Time: 0.017213961
 0.00528653

Log Method:

Average Time: 0.0049092293
 0.00528580

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3389
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=11412&goto=19617#msg_19617
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=19617
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

4 times as fast. Suppose you'd like to do an array with 100,000 double
elements... you get:

Loop Method:

% Loop limit expression too large for loop variable type.
 <LONG (99999)>.

Log Method:

Average Time: 0.050116260
 7.92382e+10

And if you hack it with two nested loops to avoid the loop limit error:

c=1. & for j=0L,n/100-1 do for k=0L,99L do c=c*a[j*100L+k]

you get:

Hacked Loop Method

Average Time: 0.30190306
 0.97063262

Log Method:

Average Time: 0.068175601
 0.97063262

A full 5 times faster.

And now, just for fun, the same data set, but with multiplication computed in a
heavily optimized C program. The core of the C code is simply the
straightforward: "for(i=0;i<N;i++) res*=a[i]"; The result:

Got 0.97063262 (Average Time: 0.001710 s)

Ouch! Another speedup of by a factor of 40!

Morals: IDL loops are pitifully slow, and you can't loop over very large arrays
without trickery, and for many operations, compiled C is *significantly* faster.

JD

--
 J.D. Smith |*| WORK: (607) 255-5842

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 Cornell University Dept. of Astronomy |*| (607) 255-6263
 304 Space Sciences Bldg. |*| FAX: (607) 255-5875
 Ithaca, NY 14853 |*|

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

