Subject: Re: Colormaps (a favorite subject!)
Posted by Liam E. Gumley on Tue, 28 Mar 2000 08:00:00 GMT

View Forum Message <> Reply to Message

Craig Hamilton wrote:

David:

Thanks for the code, but my problem is not with grey-levels vs.
number of colormap entries. My problem is as originally stated

it: 1 want the user to be able to select the number of colors

in the colormap, but | can't popup a window to get that information
without having the number of colormap entries already set

in the act of popping up the window. | must not be explaining
myself very well. I've done loads of image processing programming
in other languages on Unix and Windoze, so I'm familiar

with colormaps and scaling of image data for display.

I'm working with 16-bit data on 8-bit displays right now and | want to
avoid color-flashing, so | want to use from 32 to 128 colormap
entries for this display program. | want the user to be

able to select how many entries are used.

Maybe a little more simply:

| have been initializing the size of the colormap used with:
window,0,colors=numcolors,/pixmap,xsize=10,ysize=10
wdelete,0

But now | just want to get the number 'numcolors' from the user first.

| think | am realizing that | cannot get that number with a widget.

Right?

VVVVVVVVVVVVVVVVVYVYVYVYVYV

Craig,
Here's an alternative approach.

First, let IDL decide how many colors are available. You can do this via
a startup file. I'll assume that you wish to support 8-bit graphics
only. Here is the startup file | would use.

if lversion.os_family eq 'unix' then device, pseudo=8

window, /free, /pixmap, colors=-10

wdelete, !d.window

device, decomposed=0, retain=2, set_character_size=[10, 12]
device, get_visual_depth=depth

print, 'Display depth: ', depth

print, 'Color table size: ', Id.table_size

This causes a graphics window to be opened when IDL starts up, thus
allowing IDL to determine the size of the color table. This approach is
more flexible than selecting a pre-set number of colors.

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3379
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=11428&goto=19622#msg_19622
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=19622
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Then in your application,let the user choose which part of the color

table will be used. This is typically done via the BOTTOM and NCOLORS
keywords. BOTTOM refers to the bottom entry in the color table, and
NCOLORS refers to the number of entries in the color table that should
be used. The default values would be

bottom =0
ncolors = !d.table_size - bottom

To scale and display an image:

image = dist(256)
loadct, 13, bottom=bottom, ncolors=ncolors
tv, bytscl(image, top=(ncolors - 1)) + byte(bottom)

Using this method, you can display multiple images with different color
tables. For example:

image = rebin(dist(32), 256, 256, /sample)
window, /free

bottom =0

ncolors = 64

loadct, 13, bottom=Dbottom, ncolors=ncolors

tv, bytscl(image, top=(ncolors - 1)) + byte(bottom)

image = dist(256)

window, /free

bottom = 64

ncolors = 64

loadct, 3, bottom=bottom, ncolors=ncolors

tv, bytscl(image, top=(ncolors - 1)) + byte(bottom)

This technique is called ‘color table splitting’, and it can be very

useful when IDL is running in 8-bit graphics mode. | would also
encourage you to start thinking about designing you application to work
in 24-bit graphics mode, where color flashing problems do not exist, and
you always have 256 color table entries available.

Cheers,
Liam.
http://cimss.ssec.wisc.edu/~gumley

Page 2 of 2 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

