
Subject: Re: pointer to structures
Posted by Liam E. Gumley on Thu, 06 Apr 2000 07:00:00 GMT
View Forum Message <> Reply to Message

"J.D. Smith" wrote:
>
> "Liam E.Gumley" wrote:
>>
>> "J.D. Smith" wrote:
>>>
>>> "Liam E.Gumley" wrote:
>>>>
>>>> "J.D. Smith" wrote:
>>>> > With time, you will get used to these semantics. They seem arcane, but
>>>> > eventually it becomes somewhat readable to the experienced eye. Of course, I've
>>>> > struggled with statements like:
>>>> >
>>>> > HEADER=*(*(*self.DR)[sel[i]].HEADER)
>>>>
>>>> I neglected to provide an example of why simplified pointer and
>>>> structure referencing is desirable. Thanks for the help JD!
>>>>
>>>> ;-)
>>>>
>>>> Cheers,
>>>> Liam.
>>>
>>> But then you have to ask yourself which is worse, the confusing string above, or
>>> the explicit:
>>>
>>> drs_ptr=self.DR
>>> drs=*drs_ptr
>>> this=drs[sel[i]]
>>> hd_arr_ptr=*this
>>> hd=*hd_arr_ptr
>>>
>>> repeat this about 5000 times throughout your application, and you begin to
>>> appreciate the terse form above. Especially if you're passing some part of the
>>> nested data to a routine by reference... intermediate variables require you to
>>> remember to assign them after use (everybody remember
>>> widget_control,stash,set_uvalue=state,/NO_COPY?).
>>
>> I would not repeat this code 5000 times. I'd find a way to encapsulate
>> it in a function where I can include comments and error checking (e.g.
>> Is this a valid pointer? Does it point to a defined variable?). In these
>> cases I find it much better to create a 'put' and 'get' function pair
>> where all the de-referencing is handled inside the function. That way I
>> can use the 'put' and 'get' modules all over the place, and if I change

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3379
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=11480&goto=19671#msg_19671
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=19671
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> the way the pointers/structures are nested, I only have to change the
>> code in two places (inside the functions).
>
> The problem with this is code inflation. If you want to manipulate parts of
> your data structure in place, you need direct access to a pointer or some other
> by reference value. If you choose to pass pointer values to all intermediate
> routines, you are in a sense compromising the very data structure encapsulation
> you are attempting to achieve. What if later it became a list of pointers?
> With the put/set paradigm, you are limited in the ways helper functions can
> interact with your data structure, and you are forced to wrap each call:
>
> get,My_Var=mv
> do_something,mv
> put,My_Var=mv
>
> reminiscent of the example stash variable I gave. This is not necessarily a bad
> idea. Especially now that we have _REF_EXTRA so that incorporating overloaded
> get/put methods in an object hierarchy is possible. But it yields consistency
> at the price of flexibility. Sometimes this is a good tradeoff, perhaps even
> more times than most people would be inclined to think. In other situations, a
> more carefully designed data structure can give you the procedural flexibility
> you need without compromising future design revisions. There is room for both
> styles of design in your toolchest.

A very reasonable argument. I strive for readability and consistency
before flexibility, because it allows me to come back to my source code
after a weeks vacation and figure out what the heck I was doing before I
left.

Cheers,
Liam.

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

