Subject: Re: Sliding scale interpolation
Posted by Randall Smith on Thu, 08 Jun 2000 07:00:00 GMT
View Forum Message <> Reply to Message

Paul van Delst pvandelst@ncep.noaa.gov> writes:

> Hi there.

>

- > I want to do (what I call) "sliding scale" linear interpolation and am
- > trolling for hints on how to do it.

>

- > I have some data (complex refractive index of water) which is mostly
- > smooth but punctuated with some higher resolution absorption features.
- > What I would like to do would be to linearly interpolate the data with a
- > relatively large x-spacing in the smooth, low resolution regions but
- > increase the data spacing in the high resolution regions. The second
- > derivative of the function provides definitions for those regions (e.g.
- > for smooth regions d2y/dx2 ~ 0).

>

- > I was wondering if anyone has already done or seen info on something
- > like this? I would like to somehow dampen the ability of the
- > interpolation spacing change so that it doesn't change *only* in
- > response to the second derivative (which is rather noisy in places).

>

> Any hints, comments, suggestions appreciated.

>

You may want to check out:

D.G. Wilson, 1976, ACM Transactions on Mathematical Software,2,388 http://www.mirror.ac.uk/sites/netlib.bell-labs.com/netlib/to ms/510.gz

Basically, this code takes two vectors, x and y, and a tolerance epsilon, and returns arrays xprime and yprime. The guarantee is that if you then interpolate y based on xprime, yprime, and x the error will be no larger than epsilon.

I use it here to handle spectra which have a few lines and some continuum emission. It can dramatically reduce the amount of memory required to handle everything.

The code is written in FORTRAN, but I believe somebody around here has converted it to IDL--could be dug up if desired.

Randall Smith rsmith@cfa.harvard.edu