Subject: Re: terrain normalisation Posted by Marcel Droz on Fri, 30 Jun 2000 07:00:00 GMT View Forum Message <> Reply to Message <!doctype html public "-//w3c//dtd html 4.0 transitional//en"> <html> Thanks a lot for your explanations! I actually see the problem...but as our studies will cover the whole alps - means from France to Austria... - its rather difficult to find a homogenous DEM of the whole region, especially with limited finacial resources.
Do you know any organisation, research institute or whatever, who deals/dealt with this kind of DEM (about 250m resolution or even better)? Thanks in advance, Marcel. richard hilton wrote: <blockquote TYPE=CITE>I would be very careful with calculating the aspect of a 1km DEM when you
>are trying to use a 1km AVHRR image for sun angle/aspect/slope calculations.
You need to use a DEM that is of much higher resolution than that. You only
have "mean" height values for the 1km squares and not any information about
the slope/aspect. You can infer a slope/aspect from the surrounding pixels
>but this can result in increasing the errors in using this value instead of
assuming that the alps are flat!!!!! (the information from the surrounding
pixels cannot give subpixel infomation about what is happening inside the
central pixel.) eq.

knbsp; 10
10 10
 10 5 10
 10 10 10 A 3x3 grid. you would assume that the mean slope/aspect for the central

 dry>agrid. you would assume that the mean slope/aspect for the central
 <br/ 10 10
 10 10 5
 ``` 10 10 in this case there is a linear slope to the right (the extra 10 and 0 are of

 dr>the square) but in this case the slope is reversed: 10 10 10

knbsp; 10 0 5 10 10

knbsp; 10 10 10 this is obviously a simple case but I hope you can see the difference.
you are trying to calculate the sun angle then assuming the area to be flat
is potentially going to be more accurate (even in a mountainous area!!!). I think that you really need to be using a far heigher resolution DEM. and
then rebin the slope/aspects up to the 1km required resolution. We are currently doing a lot of research into existing 1km (30 arc-second
br>be precise) DEMs (and creating our own, called ACE (Altimeter Corrected)

dr>Heights)) in particular GLOBE v1, GTOPO30 and the 5 arc-minute JGP95E ``` - and -
have shown errors in heights of up to 1500m over parts of the world. I must -
however stress that I haven't looked at the swiss alps. I've had a look at -
the area, and the source data in GTOPO30 is DTED data. This is the best type -
of data in the DEM, but this uses a 3 arc second pixel to represent the -
shole 30 arc-second region and is not a mean over the whole area. This gives -
>vertical errors (according to GLOBE v1) of 18-120m (they used the same data -
but the stats are far more acuarate!!) What affect this will have on -
calculation of the slope/aspect is difficult to assess but I assume it would -
br>be fairly devastating!! - General features (rivers etc. always appear in the correct place) -
/horizontally but not vertically) but the topography is often supersampled
br>100-200m contours which gives rise to mathematical features and NOT true -
representations of the land surface. There should be accurately surveyed
br>maps of the swiss alps available since it is a developed country and the -
>surveying has probable been done very well, but how much these cost and who -
owns them I'm afraid I don't know. I imagine that even a 50m resolution DEM -
for a relatively small area would be incrediably expensive. - I hope this helps - Let me know if you want anymore information. - Richard</blockquote> - </html>