
Subject: Re: Cell boundary program?
Posted by Alexandros Pertsinidi on Tue, 08 Aug 2000 07:00:00 GMT
View Forum Message <> Reply to Message

I'm a new IDL user and I don't know much about objects. What would I do
with a IDLgrROIGroup once I have it? How would I plot an outline? Thanks a
lot!!

Rachel

Richard Adams wrote in message ...
>> The other method, convolution is also quick, but the returned indices are
in
>> scan-line order. In this case, all the boundary pixels are included.
This
>> method was suggested by ... uhoh, I forgotten who it was right now,
sorry.
>> Here's the steps as described on the newsgroup by the unknown author.
>>
>> bb = convol(Image, replicate(1,3,3),9,/center)
>> Edges = Where(bb gt 0 AND bb LT 255)
>> bb[*] = 0
>> bb[edges] = 255 ; make this new image just edges
>> bb = Image AND BB ; now keep just those edges inside your object
>> perimeter = where(bb eq 255); these are indices to final outline
>>
> Actually I am guilty of the second method. I can add to that what I hope is
> an improved version. Pass the autotrace function a greyscale image and a
> threshold level or range and it returns to you a IDLgrROIGroup of all the
> outlines it finds. It can be slow on complex images. You could take out the
> trace_outline function to get just one outline, if you know where it
starts.
> There are several possible improvements and maybe bug fixes - I haven't
> gotten to use it much since I wrote it. I could be made into a nice object
> with methods to get each outline by location or size, and it could be given
> an interactive widget to make selection easier. It also only uses
> 4-connectivity and could be better converted to 8-connectivity (you might
> lose some corners on the outlines). I'll may fix it if I get time,
otherwise
> somebody else could :-)
>
> I hope it is useful, Richard.
>
> function autotrace, image, select_range
>
> ;
> ; Given an image (greyscale) and a selection range - either a single grey
> level or a min/max range

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3623
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12125&goto=21105#msg_21105
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=21105
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> ; return a IDLgrROIGroup that corresponds to the 4-connected outline of
each
> selected region
> ;
>
> outlines = obj_new('IDLgrROIGroup')
> image_size = size(image, /dimensions)
> work_image = bytarr(image_size[0], image_size[1])
> if n_elements(select_range) eq 1 then selected = where(image eq
> select_range, count) $
> else selected = where((image ge min(select_range)) and (image le
> max(select_range)), count)
> if count eq 0 then return, outlines
> work_image[selected] = 255
> bb = convol(work_image, replicate(1,3,3),9,/center)
> edges = Where(bb gt 0 AND bb LT 255)
> bb[*] = 0
> bb[edges] = 255 ; make this new image just edges
> work_image = work_image AND bb ; now keep just those edges
> edges = where(work_image eq 255, count)
>
> repeat begin ; search for each outline
> edges = where(work_image eq 255, count)
> if count gt 0 then begin
> start = edges[0]
> new_roi = trace_outline(work_image, start)
> outlines->Add, new_roi
> endif
> endrep until count eq 0
> return, outlines
> end
>
>
> function get_neighbour_index, start, nx, ny, first_dir
>
> ; get indices for maze tracing.
> ; relative to direction of last step, look left, forward, right, back in
> that preferred order
> ; first check that each step is in bounds for our image
> ; make an array of those indices
> ; shift array to get absolute direction into relative directions
> ; see which indices are valid
> ; remember which absolute directions these correspond to
> right = 0
> down = 1
> left = 2
> up = 3
> above = start lt nx ? -1 : start - nx

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> below = start / nx eq ny - 1 ? -1 : start + nx
> to_right = start mod nx eq nx - 1 ? -1 : start + 1
> to_left = start mod nx eq 0 ? -1 : start - 1
> neighbours = [below, to_left, above, to_right]
> neighbours = shift(neighbours, -first_dir)
> directions = shift([right, down, left, up], -first_dir + 1)
> valid = neighbours ge 0
> return, [[valid], [neighbours], [directions]] ; [which are valid, their
> indices, their directions]
> end
>
> function trace_outline, image, start
> image_size = size(image, /dimensions)
> done = 0
> direction = 0 ; right to start
> current = start
> verts = [current]
> while not done do begin
> search = get_neighbour_index(current, image_size[0], image_size[1],
> direction)
> s_valid = where(search[*, 0] eq 1, s_count)
> if s_count eq 0 then stop ; should not happen unless 1 pixel image!
> s_index = reform(search[*, 1])
> s_dirs = reform(search[*, 2])
> next_edge = where(image[s_index[s_valid]] eq 255, n_count)
> if n_count ge 1 then begin
> current = s_index[s_valid[next_edge[0]]]
> verts = [verts, current]
> direction = s_dirs[s_valid[next_edge[0]]]
> done = current eq start
> endif else done = 1
> endwhile
> image[verts] = 0
> x = verts mod image_size[0]
> y = verts / image_size[1]
> oOutline = obj_new('IDLgrRoi', x, y)
> return, oOutline
> end
>

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

