Subject: Re: object newbie
Posted by John-David T. Smith on Fri, 11 Aug 2000 07:00:00 GMT

View Forum Message <> Reply to Message

Martin Schultz wrote:
>

> Mark Hadfield wrote:
>>

> [..]

>> Also object properties are not strictly tied to the class

>> structure: GetProperty/SetProperty keywords can represent tags in the class
>> structure or they can be dynamically interpreted, thus hiding the

>> implementation details.

... to elaborate (because Chip calls himself an object newbie): | have
an example where | store among other things an array of structures
(actually objects of the same type) in the object (and | am in fact
using a container for this). Say this structure array is named
"campaigns". In my GetProperty method | then have keywords to access
- the complete array as objects campaigns=campaigns
- the campaigns data as structrues struc_campaigns=struc_campaigns

- only the campaign names chames=cnames
- only the campaign dates cdates=cdates
etc.

Specific retrieval methods (usually functions then) enhance the
flexibility of the access. E.g.
GetCampaignDates(name=name) can be used to retrieve the dates for
campaigns selected by name
(including a pattern match) -- this is
something | would consider
"value added feature" when you use
objects.

The GetProperty method may in fact use the special retrieval methods to
extract things. As long as you store only small amounts of data, it

won't matter if you access the campaigns structure array several times
and pass parts of it between methods. If you envision huge amounts of
data you may want to think more carefully how often these arrays must be
copied. | haven't dealt with these issues yet, but | would be happy to

hear comments.

Cheers,
Martin

VVVVVVVVVVVVVVVVVVVVVVVVYVVYVYVYVYVYV

It should be pointed out that the GetProperty procedures outlined in the prior

Page 1 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3389
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12137&goto=21126#msg_21126
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=21126
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

postings are fully functional only when the _REF_EXTRA keyword is employed (in
fact it was created by RSI due to this failing). This allows proper keyword
inheritance when chaining up to the properties of superclasses -- the only other
option is enumerating in the keyword list all superclass properties, which of
course is an egregious violation of encapsulation... But of course, all this

still does not excuse the inflexible encapsulation functionality IDL's object
framework presents us.

Remember to give those properties unique names -- if you follow the data member
naming convention as Martin does (e.g. cnames=cnames) you'll avoid risking
namespace conflicts an additional time, since you have to worry about it with
INHERIT'ing anyway. This leaves only the computed ("dynamically interpreted™)
property names to worry over.

As far as the array copying issue, for dealing with those properties which are
truly large, the only way to pass by reference out of your GetProperty method is
to use pointers... which is actually good: imagine the confusion of having
otherwise unremarkable variables as silent referents to object data members.
Pointers are your friends.

An additional side note: | think a basic concern people have with pointer usage
IS memory management -- forgetting to free pointers at the right time, or the
awkwardness of having to free them. When you have various nested levels of
pointers to structures with pointers to arrays of pointers, etc., it can get

ugly. There are a few tricks to make freeing pointers at cleanup (object or
otherwise) less cumbersome. They rely on a few convenient properties of
ptr_free:

1. The fact that you may free a null pointer with impunity.
2. Arguments (of which there may be any number), are freed from first to last.
3. Pointers in arrays can be freed all at once by passing the array.

Consider this statement:

if ptr_valid(self.Recs) then $
ptr_free,(*self.Recs).Ints,(*self.Recs).Time,self.Recs

self.Recs is a pointer to a struct containing various other pointers (like Ints
and Time), which may or may not be defined (i.e. they might be null pointers).
Rather than pedantically test all of the cases before freeing each field and
then, and only then, free the higher level pointer, | rely on properties #1 &

#2. | can free self.Recs ptr field members and the pointer itself all in one

go. No worry about the chicken before the egg scenario, or undefined
pointers.

Consider a pointer to an array of pointers: self.parr. Freeing it is as simple
as:

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

if ptr_valid(self.parr) then ptr_free,*self.parr,self.parr

This works even if any or all of the pointers are null -- a general assumption
for which | always allow. With these few properties of ptr_free you can really
reduce the hassle of cleaning up after yourself. Allowing any pointer to be a
potential null pointer also allows you to prune various things from your data
structure before cleanup, to save them for other uses. Simply do something
like:

kept_ptr=self.saveme
self.saveme=ptr_new()

This technique has a myriad of uses -- but that's another article.

Good Luck,

JD

J.D. Smith "\ WORK: (607) 255-6263
Cornell University Dept. of Astronomy */ (607) 255-5842
304 Space Sciences Bldg. "\ FAX: (607) 255-5875
Ithaca, NY 14853 */

Page 3 of 3 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

