
Subject: Surprising Odds and Ends
Posted by davidf on Mon, 14 Aug 2000 07:00:00 GMT
View Forum Message <> Reply to Message

Hi Folks,

I've been working on the 2nd Edition of my book for
the past couple of weeks. As always when I try to write
about something in IDL that I think I know something about,
I'm learning all kinds of new things. I thought I might
share a couple of the stranger things with you. There is
no purpose, really, except to get you ready for the IDL
Expert Programmers Association exam that will be given
early next month to Ben and a couple of other lucky
programmers.

1. The units for the TICKLEN keyword are in normalized
 coordinates relative to the window size. The units
 for the XTICKLEN and YTICKLEN keywords are in normalized
 units with respect to the TICKLEN keyword. This makes
 sense, I suppose, but it is completely contrary to the
 IDL documentation for XTICKLEN and provided many confusing
 moments for me. (I actually think I saw this documented
 somewhere, but I can't find it now when I am looking in
 all the obvious places.)

2. The HISTOGRAM function documentation states that it
 will use the minimum and maximum value of the data
 to calculate image histograms. But this appears to
 be untrue. At least with byte images, the minimum
 and maximum values of the histogram are always 0
 and 255, no matter what values are in the image.

3. The HEAP_GC command (which, heaven forbid, you *really*
 shouldn't be using anyway) is dependent on program
 level. For example, in Cleanup routines I want to
 destroy pointers in my info structure. But if the
 program crashes in an event handler, the info structure
 is undefined in the Cleanup routine. In such a case
 I might want to clean up the pointers by issuing a HEAP_GC
 command. But I could never get this to work. Today I
 found out why. The heap apparently exists *only*
 at the main IDL level. If you try to call Heap_GC from
 some other level (e.g., inside a Cleanup routine) the
 command appears to work, but nothing really happens. This
 command can *only* be used from the IDL command line.

4. Another way of doing this:

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12181&goto=21248#msg_21248
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=21248
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 ptrToUndefinedVar = Ptr_New(/Allocate_Heap)

 is to do this:

 ptrToUndefinedVar = Ptr_New(xx)

 where XX is an undefined variable. Neat! It makes storing
 the extra keyword collect via keyword inheritance MUCH easier.

 ptrToExtraKeywords = Ptr_New(extra)

 And I always have a valid pointer that can be de-referenced.
 (I'm sure the pointer gurus already knew this, but it takes
 me a bit longer sometimes.)

5. PRINTER offsets are calculated from the edge of the printable
 portion of the page, rather than from the page edge, as they
 are for PostScript files. Each offset point is different for
 each printer. Thus, you have to program in printer-specific
 fudge factors if you want centered output. Ouch!

Enough for now. I'm leaning about 10 new things a day, so I'll
probably have more before the exam.

Cheers,

David

--
David Fanning, Ph.D.
Fanning Software Consulting
Phone: 970-221-0438 E-Mail: davidf@dfanning.com
Coyote's Guide to IDL Programming: http://www.dfanning.com/
Toll-Free IDL Book Orders: 1-888-461-0155

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

