Subject: Re: Sum along diagonals
Posted by Craig Markwardt on Fri, 25 Aug 2000 07:00:00 GMT
View Forum Message <> Reply to Message

mole6e23@hotmail.com (Todd Clements) writes:

```
> Every once in a while (not often enough to make me worry about optimizing
> too much), I want to take a not necessarily square matrix and get the sum
> along the diagonals, such as the following, with the theoretical function
> sum diag:
>
> IDL> blah = indgen(4, 4)
 IDL> print, blah
                        3
       0
            1
                  2
>
            5
                        7
       4
                  6
>
            9
>
       8
                 10
                        11
      12
            13
                  14
                         15
>
  IDL> print, sum_diag( blah )
            5
                 15
                        30
                              30
                                    25
                                           15
       0
>
  which is the series [0, 4+1, 8+5+2, 12+9+6+3, ...]
> Of course, to be difficult, I'd like it to work for non-square matrices as well:
```

How about this solution. It's not a one-liner, and it uses two loops, but remember loops are not always bad if you can do a lot of work inside one iteration. This one makes NX+NY-1 iterations.

;; Set up the problem with some fake data, a NX x NY array

```
nx = 4 & ny = 3 & mm = indgen(nx, ny)

;; Output array
tt = fltarr(nx+ny-1)

;; Do the work
ll = lindgen(nx>ny)
for i = 0, ny-1 do tt(i) = total((mm(0+ll,i-ll))(0:i<(nx-1)))
for i = 1, nx-1 do tt(i+ny-1) = total((mm(i+ll,ny-1-ll))(0:(nx-1-i)<(ny-1)))</pre>
```

For the gobledy-gook impaired, first note that the two loops march down the left side of the array and then across the bottom, respectively. Second, I'm using array indexing along two dimensions simultaneously. The expression, mm(0+II,i-II), is the actual diagonal of interest. The bit at the end of the expression, (0:i<(nx-1)), is used to trim off the end, which may contain the wrong data if the array is not square.

There you go! This is a speedy devil on my machine.
Good luck, Craig

Craig B. Markwardt, Ph.D. EMAIL: craigmnet@cow.physics.wisc.edu Astrophysics, IDL, Finance, Derivatives Remove "net" for better response