Subject: Re: Philosophy of for loops
Posted by Craig Markwardt on Mon, 28 Aug 2000 07:00:00 GMT

View Forum Message <> Reply to Message

tclement@ucsd.edu (Todd Clements) writes:

So what defines a slow loop? Is it having a bunch of accesses to
sub-elements of arrays? Is it just having a bunch of statments? | suppose
| could do some tests of my own, and | have a little, but it's much more
fun to hear what you all have to say on the subject. | wouldn't have seen
any IDL-ku if | just kept my thoughts to myself!

V VVVYVYV

A good question. | think there are two parts to it, and you are on
the right track. Theory comes first, then some practical solutions.

IDL is a scripted language, so almost by definition very little
optimization can be done. Sure, the IDL code is "compiled,” but what
that really means is that the IDL statements are converted to some
intermediate form, sometimes called bytecode. These bytecodes
represent a higher level of abstraction and portability compared to

true machine code, but with that comes the burden that each bytecode
requires many many machine code operations to implement.

Therein lies the rub. Even a simple FOR loop, there's always going to
be a lot of "overhead" or extra processing. Darn. This is the price

to have IDL be so general purpose. Another thing to keep in mind is
that basically *everything* gets re-evaluated each iteration. When
you compare the following two examples:

for i = 0L, N-1 do x(i) = f(x(i).tag) ; vs.
x = f(x.tag)

you should realize that in the first, the values of I, X(I), X(I).TAG
and F(X(I).TAG) are re-evaluated every iteration, because IDL is
dynamic. In the second example the operands are evaluated once.

What this really boils down to is, *reduce* the number of iterations,
and do more per iteration. This will minimize the useless processing
compared to the "real" processing.

You can do more per iteration with vectorization. The vectorized
operations *are* heavily optimized for speed, but you need to know how
to take advantage of them. That is left as an exercise to the reader

:-), but obviously it's often non-trivial, and sometimes impossible.

Let's see what this boils down to.

Q: When is the number of iterations, N, too many?

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1763
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12259&goto=21518#msg_21518
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=21518
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

A: When the execution time of the empty loop becomes perceptible:
FOR | = 0L, N-1 DO BEGIN & END
(this is about a million for my faster machine)

Q: How much vectorization should | do?

A: Generally it is sufficient to only vectorize the *innermost* loop.
If you have an image with rows and columns, and you can vectorize
the operation at the row-level, you should be safe. This is often
described as *chunking* or *banding*.

Hope this helps!
Craig

for when=you, must do $
many, many, iterates, $
vectorize (a=chunk)

Craig B. Markwardt, Ph.D. EMAIL: craigmnet@cow.physics.wisc.edu
Astrophysics, IDL, Finance, Derivatives | Remove "net" for better response

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

