Subject: Re: Philosophy of for loops
Posted by Struan Gray on Wed, 30 Aug 2000 07:00:00 GMT

View Forum Message <> Reply to Message

Wayne, landsman@my-deja.com writes:

Form (1) is slightly faster, but the calculation
cannot be interrupted with a Control-C. Also,
it is my impression that the speed difference
is less than it used to be, and that form (2)

IS now better optimized.

> inarr=randomn(seed, 3, 2048,2048)
> outarr = fltarr(2048,2048,/nozero)

>

> (1) for j=0,2047 do for i=0,2047 do outarr[i,j] = median(inarr[*,i,j])
>

> (2) for j=0,2047 do begin

> fori=0,2047 do begin

> outarr(i,j] = median(inarr[*,i,j])
> endfor

> endfor

>

>

>

>

>

>

On my machine (a Mac G3 powerbook, IDL 5.3) (1) is slightly faster
for small arrays but the difference is insignificant by the time you
are up to 2048x2048.

> (I also assume that the two FOR loops are unavoidable
> here, but | would be delighted to be proved wrong.)

| often take data which consists of 1D spectra on a 2D spatial
grid, ending up with arrays which are (Nspecpoints, Ngridx, Ngridy) in
dimension. Often | want to do some processsing operation on all the
individual spectra, and it helps a lot to ‘'unwrap' the array so that
you do one loop instead of two nested ones. In your case the code
would look like this:

npoints = 2048
inarr = reform(inarr, 3, npoints*npoints, /overwrite)
outarr = fltarr(npoints*npoints, /nozero)
for i=0L, long(npoints)*npoints - 1 do $

outarr[i] = median(inarr[*,i])
inarr = reform(inarr, 3, npoints, npoints, /overwrite)
outarr = reform(outarr, npoints, npoints, /overwrite)

For the sorts of arrays | use (100, 200, 200) this is quite a bit
faster, but interestingly enough by the time you get up to arrays like

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1284
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12274&goto=21570#msg_21570
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=21570
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

yours the speed advantage has gone. Watch out for overflow on your loop
indices.

In this particular case you can actually work without loops
altogether:

inarr = reform(inarr, 3*npoints*npoints, /overwrite)

outarr = reform(median(inarr, 3), 3, npoints, npoints, /overwrite)
outarr = reform((temporary(outarr))[1,*,*])

inarr = reform(inarr, 3, npoints, npoints, /overwrite)

The median filter creates a whole load of 'wrong' elements, but we can
ignore them and eliminating the loop speeds the whole thing up so much
that it's worth the overhead to calculate them. This version was
substantially faster than the other three at all array sizes.

Both of these techniques require the ‘interesting' dimension to be
first, but sandwiching the code with a ROTATE or TRANSPOSE will do
that without a punitive overhead so they can be made quite general.

| apologise to J.D. for not fitting HISTOGRAM in there somewhere.

Struan

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

