Subject: Re: taking the widget plunge. help
Posted by Martin Schultz on Tue, 12 Sep 2000 16:24:30 GMT

View Forum Message <> Reply to Message

"J.
>

>

>

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>

>>
>>
>>
>>
>>
>>
>>

VVVVVVVVVVVVVYVVYVYVYV

D. Smith" wrote:

Martin Schultz wrote:

This seems somewhat "convoluted” to me (but after recent experience, |
am sure you will have your reasons for proposing exactly this). |
always tend to think that setup is best done with ASCII files that are
easily editable and human readable. Yes, you should have a method
named something like FSC_PsConfig::Setup, and this method should
define a minimal set of defaults. But then it would read a file and
overload the default definitions. If it doesn't find the file, well,
then you live with the defaults (or the company creates a child object
with specific defaults). Proposed strategy:

<snip>
As for the file format you could do something like
A4:
size=11.9,6.2 # not sure about the values
color=1
END

A4_Landscape:
size=6.2,11.9
color=0

END

The problem with using a text file for the input, is that it's deceptively

appealing. Easy to edit, no object knowledge required, etc. But, once you've
set the format, you're basically locked into it. Want to add some new items or
reorganize (for instance, making groups of setups)? You'll need special code to
handle older-format input files (though you could obviously plan ahead for such
contingencies). Want to reorganize the internal representation of the data
entirely? You'll still have to accomodate the old input mechanism. For this
problem, a flat-file input is probably tractable, but | thought it would be a

good example case for maximizing forward compatibility. Backward compatibility
is easy, if tedious. Forward compatibility (being able to replace aging
modules/objects with new ones without changing the including code), is more
troublesome.

The idea of abstracting the interface to be limited to a defined set of methods
with given arguments contrains the fixed interface specification to elements
enforced by the language itself... certainly RSI won't change the meaning of
arguments or remove keyword functionality. This abstraction is certainly

Pag

el of 3 ---- CGenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2283
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12310&goto=21694#msg_21694
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=21694
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

VVVVYVVVYVYVYV

sometimes overkill, as it is not without its costs. But for something which is
intended to be upgradeable and extensible, | think it can be worth it.

JD

J.D. Smith "\ WORK: (607) 255-6263

Cornell University Dept. of Astronomy */ (607) 255-5842

304 Space Sciences Bldg. "\ FAX: (607) 255-5875

Ithaca, NY 14853 */

| see. Yet, | would like to argue for text based setup files, because

they are relatively easy maintainable and human readable. If | compare
the Windows registry with the Unix ASCII based setup files, |

certainly prefer the latter (for example one can use grep to find
something, and one can add comments). With a format like the one |
indicated, you still guarantee a lot of up- and downward

compatibility: Variables that are undefined in one version will simply
produce a warning message but otherwise be ignored. BTW: | don't agree
that backward compatibility is always easy - at least not, if you are
dealing with binary files of any kind (including IDL sav files).

| do concede, however, that ASCII files bear the danger of getting

messy and "incompatible”. To some extent, this can be solved by
setting some standards such as:

- comments begin with '#'

- definition sections begin with a name followed by "' and end with
'END'

- a setup file contains either no definition sections (i.e. variables
are defined directly or "globally™) or only definition sections

- each variable definition must contain a '=" even if the definition

is empty

and to facilitate the search for the file:
- the filename of the setup file is <programname>.setup

One advantage compared to the sort of “internal” setup you are
proposing is that even people who don't know much about IDL can
customize the program (errr, the object ;-) whereas you need to know
how to inherit if you want to overwrite a setup method. Well, on the

other hand, this would give even more power to skilled programmers who
can getrich ...

Cheers,
Martin

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

e

[[Dr. Martin Schultz Max-Planck-Institut fuer Meteorologie [[

([Bundesstr. 55, 20146 Hamburg i
[[phone: +49 40 41173-308 [l

([fax: +49 40 41173-298 1

[[martin.schultz@dkrz.de [l

L

Page 3 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

