
Subject: Re: taking the widget plunge. help
Posted by Martin Schultz on Tue, 12 Sep 2000 16:24:30 GMT
View Forum Message <> Reply to Message

"J.D. Smith" wrote:
>
> Martin Schultz wrote:
>
>>
>> This seems somewhat "convoluted" to me (but after recent experience, I
>> am sure you will have your reasons for proposing exactly this). I
>> always tend to think that setup is best done with ASCII files that are
>> easily editable and human readable. Yes, you should have a method
>> named something like FSC_PsConfig::Setup, and this method should
>> define a minimal set of defaults. But then it would read a file and
>> overload the default definitions. If it doesn't find the file, well,
>> then you live with the defaults (or the company creates a child object
>> with specific defaults). Proposed strategy:
> <snip>
>> As for the file format you could do something like
>> A4:
>> size=11.9,6.2 # not sure about the values
>> color=1
>> END
>>
>> A4_Landscape:
>> size=6.2,11.9
>> color=0
>> END
>>
>
> The problem with using a text file for the input, is that it's deceptively
> appealing. Easy to edit, no object knowledge required, etc. But, once you've
> set the format, you're basically locked into it. Want to add some new items or
> reorganize (for instance, making groups of setups)? You'll need special code to
> handle older-format input files (though you could obviously plan ahead for such
> contingencies). Want to reorganize the internal representation of the data
> entirely? You'll still have to accomodate the old input mechanism. For this
> problem, a flat-file input is probably tractable, but I thought it would be a
> good example case for maximizing forward compatibility. Backward compatibility
> is easy, if tedious. Forward compatibility (being able to replace aging
> modules/objects with new ones without changing the including code), is more
> troublesome.
>
> The idea of abstracting the interface to be limited to a defined set of methods
> with given arguments contrains the fixed interface specification to elements
> enforced by the language itself... certainly RSI won't change the meaning of
> arguments or remove keyword functionality. This abstraction is certainly

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2283
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12310&goto=21694#msg_21694
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=21694
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> sometimes overkill, as it is not without its costs. But for something which is
> intended to be upgradeable and extensible, I think it can be worth it.
>
> JD
>
> --
> J.D. Smith /*\ WORK: (607) 255-6263
> Cornell University Dept. of Astronomy */ (607) 255-5842
> 304 Space Sciences Bldg. /*\ FAX: (607) 255-5875
> Ithaca, NY 14853 */

I see. Yet, I would like to argue for text based setup files, because
they are relatively easy maintainable and human readable. If I compare
the Windows registry with the Unix ASCII based setup files, I
certainly prefer the latter (for example one can use grep to find
something, and one can add comments). With a format like the one I
indicated, you still guarantee a lot of up- and downward
compatibility: Variables that are undefined in one version will simply
produce a warning message but otherwise be ignored. BTW: I don't agree
that backward compatibility is always easy - at least not, if you are
dealing with binary files of any kind (including IDL sav files).

 I do concede, however, that ASCII files bear the danger of getting
messy and "incompatible". To some extent, this can be solved by
setting some standards such as:
- comments begin with '#'
- definition sections begin with a name followed by ':' and end with
'END'
- a setup file contains either no definition sections (i.e. variables
are defined directly or "globally") or only definition sections
- each variable definition must contain a '=' even if the definition
is empty

and to facilitate the search for the file:
- the filename of the setup file is <programname>.setup

One advantage compared to the sort of "internal" setup you are
proposing is that even people who don't know much about IDL can
customize the program (errr, the object ;-) whereas you need to know
how to inherit if you want to overwrite a setup method. Well, on the
other hand, this would give even more power to skilled programmers who
can get rich ...

Cheers,
Martin

--

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 [[[[[[[[[
[[Dr. Martin Schultz Max-Planck-Institut fuer Meteorologie [[
[[Bundesstr. 55, 20146 Hamburg [[
[[phone: +49 40 41173-308 [[
[[fax: +49 40 41173-298 [[
[[martin.schultz@dkrz.de [[
 [[[[[[[[[

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

