Subject: Re: taking the widget plunge. help
Posted by John-David T. Smith on Mon, 11 Sep 2000 23:25:11 GMT

View Forum Message <> Reply to Message

> P.S. Let's just say | spent a couple of days writing

> documentation for FSC_PSConfig, *the* best program I've
> ever written, and no one downloads it or uses it. You just
> figure after a while, what's the point?

| took this as a friendly reminder to check out your new stuff, and | was

frankly amazed at how much work you'd put into the documentation. Really an
astounding effort. | will try to integrate FSC_PSConfig into some of my
programs around here.

One note which I think is instructive. You include a section on customization
where you outline how to directly modify your source to add personal or
company-wide set-up lists. This is a very useful feature, but | think you're
going to cause yourself and potential users grief here. It's a *perfect* place

to flex our object oriented muscles. The problem will be that in a year you'll
think of a great way to redesign it, or maybe RSI makes some changes to device
which prompt a rewrite. Then, either all the users who have made their own
modifications will be out of luck, or you'll be contrained in what kind of
updates you can do. It is exactly these types of situations that scream out for
some sort of object relationship. If, rather than giving direction on how to
change your code, you gave a simple example of INHERIT'ing your class, and
chaining to its setup code, you could fully preserve "forward compatibility” --
i.e. drop-in replacement of your updated code.

Or, since in this case the local setup changes are data-only (no fundamental
method changes), you could simply provide access to an internally growable list
of setups. Inheritance is not even really required.

| haven't looked closely, but a method which allows you to add setup lists

(e.g. self->AddSetup,"Company Viewgraph",/EUROPEAN, FontNameSet="Helvetica"),
would seem to do the trick. This might be called automatically in Init with all

the built-in defaults. A user could INHERIT it, override and chain to AddSetup

for a fully internal solution, or they could use a compound relationship and add

the setups "from the outside" in whatever wrapper routine (or object) they

use.

The details of how set-ups are stored, manipulated, etc., would be hidden, only
the published interface of AddSetup need remain the same (or backwards
compatible anyway... nothing to stop you adding new keywords as new features
become available).

Anyway, it's just a thought. Perhaps you're afraid of scaring off potential
users with objects. You shouldn't be. It's good for them.

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3389
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12300&goto=21703#msg_21703
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=21703
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

JD

J.D. Smith "\ WORK: (607) 255-6263

Cornell University Dept. of Astronomy */ (607) 255-5842
304 Space Sciences Bldg. "\ FAX: (607) 255-5875
Ithaca, NY 14853 */

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

