Subject: Re: 10 bytes real
Posted by Ed Santiago on Mon, 30 Oct 2000 13:39:23 GMT

View Forum Message <> Reply to Message

Enclosed below is an IDL function | wrote earlier this year. It parses
16-byte FLOATS, used on some legacy VAX code whose results | needed to
work with.

It doesn't do over/underflow checks (I "know" what the data should look
like, and so didn't feel like taking the time to do it right).

My code also deals with ULONGS for input. You'll need to change that
to UINTs, and change all the bitmasks.

In short, this doesn't solve your problem, but it might be a start.

G'luck,

E

snip 00 00 00 00 00
------------- e e L E |
“+

: NAME:

; PARSE_REAL16

; IDENT:

; $Id: parse_reall6.pro,v 1.1 2000/04/26 14:51:16 esm Exp $

; PURPOSE:

; Convert (VAX Fortran) REAL16 (16-byte floats) to float or double
; AUTHOR:

; Ed Santiago

; CALLING SEQUENCE:
; float = parse_reall6(reall6)

; INPUTS:
; reallé 4xn array of ULONGSs.

; OUTPUTS:
; float array of length n, with machine-readable IEEE floats/doubles

; KEYWORDS:
; IDOUBLE convert to 8-byte (64-bit) double-precision IEEE T_float

; SIDE EFFECTS:

Page 1 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3408
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12554&goto=22238#msg_22238
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=22238
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; EXAMPLE:

; ACKNOWLEDGMENTS:

; The author wishes to acknowledge Evan Noveroske for patiently
: describing VAX Fortran and filesystem stuff, figuring out the

. "record" stuff in VAX files and how to read them in UNIX,

; generating sample data files, finding documentation on the

; internal representation of REAL*16, and most especially

; for his kindness and promptness in providing this help!

FUNCTION parse_reall6, reall6, double=double, to=to
On_Error, 2
; Parse the keywords.
IF N_Elements(to) EQ O THENto =4
IF Keyword_Set(double) THEN to = 8
IF to NE 4 AND to NE 8 THEN MESSAGE, 'Can only convert to 4 or 8 bytes'
; Input argument MUST be a 4xn array of ULONGs. Anything else, and we die
IF size(reall6, /TName) NE 'ULONG' THEN $
MESSAGE, 'Input argument must be of type ULONG'

IF (size(reall6))[1] NE 4 THEN $
MESSAGE, 'Input argument must be a 4xN array'

; Okay, here we go.
; For more details on binary representations, see
; http://www.digital.com/fortran/docs/vms-um/dfum020.htm

; REAL16 is a 128-bit quantity, defined as follows:

;31 24 23 16 15 87 0

: S T S ST +
p S exponent | mantissa |
T — e —— +
v mantissa |
R —— +
v mantissa |
S S —— +
v mantissa |
B +

Page 2 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; where:

; SIGN, as always, is the single highest bit. 0 = positive, 1 = neg

; EXPONENT is an "excess 16384" exponent, more on that later.

; MANTISSA is the fractional part, with the "redundant most significant
X fraction bit not represented”. What that means is that,

; since the first bit is always going to be 1, it isn't

; included. That's irrelevant for our purposes.

; Thus our job here is to extract the sign, exponent, and mantissa,
; and scrunch into 32 bits.

sign =reall6[3,*] AND '80000000'XL

exponent = reall6[3,*] AND '7FFF0000'XL
mantissa = real16[3,*] AND '0000FFFF'XL

; IEEE S_float (REAL*4) format is a 32-bit representation of a float:

;31 23 22 16 15 87 0

R R — S R — S R R +
7 |S| exponent | mantissa |

T R e — +

; Note that we have 8 bits of exponent, instead of 15. Thus, instead
; of excess-16384 (2"14), we have to use excess-127 (277).

; Note also that we have 23 bits of mantissa. Since we only get 16
; by masking off the top word of the REAL16, we'll need to shift that
; left and add some more bits from the next word.

; Finally, NOTE CAREFULLY that the exponent doesn't live on a nybble
; boundary! The actual bits used are 0x7F800000 !

; IEEE T_float (double, or REAL*8) is a 64-bit representation:

;31 2019 1615 87 0
- +ommmmnmene Fommmmemmmeneeeen e — +
7 |S] exponent | mantissa |

T R — e — +
v mantissa |

L SR ——— +

; Here we have 11 bits of exponent, 20 of mantissa.

IF to EQ 8 THEN BEGIN

Page 3 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

excess =1023
shift_exp = 20
ENDIF ELSE BEGIN
excess =127
shift_exp = 23
ENDELSE

; Convert exponent from excess-16384 to excess-127 or -1024
exponent = ishft(exponent, -16)

tmp = where(exponent NE 0, c)

IF ¢ NE 0 THEN exponent[tmp] = exponent[tmp] - 16383 + excess
exponent = ishft(exponent, shift_exp)

; Add more bits to our mantissa
IF to EQ 8 THEN BEGIN

mantissa = ishft(mantissa, 4) + (ishft(real16[2,*], -28) AND 'OF'XL)
ENDIF ELSE BEGIN

mantissa = ishft(mantissa, 7) + (ishft(real16[2,*], -25) AND '7F'XL)
ENDELSE

new_ul = sign + exponent + mantissa

IF to EQ 8 THEN BEGIN
new_ul = ishft(ULong64(temporary(new_ul)), 32)
new_ul = new_ul + (ishft(real16[2,*], 4) AND 'FFFFFFFOQO'XL)
new_ul = new_ul + (ishft(real16[1,*], -28) AND '0000000F'XL)

RETURN, double(temporary(new_ul), 0, N_Elements(sign))
ENDIF ELSE BEGIN
RETURN, float(temporary(new_ul), 0, N_Elements(sign))
ENDELSE
END

Eduardo Santiago Software Type esm@lanl.gov RKBA!

Page 4 of 4 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

