
Subject: Re: How Computers Represent Floats
Posted by William Clodius on Thu, 30 Nov 2000 08:00:00 GMT
View Forum Message <> Reply to Message

Almost every computer newsgroup on programming languages or numerics has
this discussion at one time or another. The vast majority of programming
languages rely on the hardware representation of floating point numbers
so that this issue is essentially programming language independent. The
vast majority of computer systems (where computer systems excludes hand
held calculators which often implement binary coded decimal) now
implement the core of the IEEE 754 standard, so my remarks will be
confined to such systems. However the minority of computer systems that
do not implement the IEEE 754 standard share many of the same quirks.

Details on these quirks, with an emphasis on the IEEE 754 standard, are
available from reports by David Goldberg, "What Every Computer Scientist
Should Know about Floating Point Arithmetic," and the subsequent
supplement to that report by Doug Priest, "Appendix D". Both reports
were written for Sun Computer systems and are available from
docs.sun.com in pdf and postscript formats. Links to the documents are
available at www.validgh.com.

In almost any binary system including IEEE 754, most of the time
floating point numbers can be thought of as divided into three parts, a
sign, a mantisa, and an exponent stored in a fixed size "word". In IEEE
754 the mantisa can be thought of as an integer with values from
2^n_mant to 2*2^n_mant-1, where n_mant is the number of bits available
for the mantisa. Note that the mantisa is non-zero. In IEEE 754 the
exponent can be thought of as a scale factor multiplying the integer,
where the scale factor is a simple poser of two whose relative range is
determined by the number of bits available for the exponent. IEEE 754
requires that the computer make available to the user two such
representations: what we normally think of as 32 bit single and 64 bit
double precision. IEEE 754 requires that all intermediate calculations
be performed a higher precision so

The fact that the data is stored in a fixed size word results in the
first surprise to very inexperienced users: this representation is
correct for only a finite number of values. This representation cannot
deal with all elements of the countable set of all rationals, let alone
the uncountable set of all irrationals. Inaccuracies and errors are
almost unavoidable in any attempt to use this data type, except for
knowledgeable users in limited domains.

This binary representation does not let IEEE 754 exactly represent
numbers that are not simple exact multiples of powers of two. This
results in the second surprise to many users: most simple decimal
floating point numbers (e.g., 0.3 or 0.1) cannot be exactly represented

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1793
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12727&goto=22630#msg_22630
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=22630
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

and any attempt to store such numbers results in errors. E.g., 0.1 might
become 0.1000000005 when stored.

Most manipulations of IEEE 754 numbers result in intermediate values
that cannot be represented exactly by single and double precision
numbers. This results in the third surprise, most manipulation result in
a cumulative loss of accuracy. To minimize this loss of accuracy it
requires that intermediate calculations be performed at a higher
precision with well defined rounding rules to obtain the final
representation of the intermediate results. Most systems appear to use
double precision to represent intermediate results for single precision
calculations. All systems must use a precision higher than double for
intermediate results of double precision calculations. This higher
precision representation need not be available to users, however the
Intel extended precision is essentially this higher precision
intermediate type (it differs slightly in ways that irritate
numericists). When this higher precision type is available it need not
have the well defined rounding and error propagation propers of single
and double precision.

While most of the time IEEE 754 has this behavior there are exceptions
represented by special values. Obviously there has to be a zero value.
IEEE 754 also has special values such as + or - infinity to represent
such things as dividing a finite number by zero, NaN (Not a Number) for
representing such things as zero divided by zero, and a signed zero.
This allows calcuations to procede at high speed code and the post-facto
recognition and (if neecessary) correction of problems with the
algorithm or its "inaccurate" implementation in IEEE 754. It also
generates floating point exceptions that can be detected automatically
withot examining all the output numbers. Many languages were developed
before IEEE 754 and do not map naturally to this model.

The existence of infinities and NaN leads to a fourth surprise to many
users: obviously bad results can be generated and the computer does not
stop the instance it detects such "bad" values. As there are prblem
domains where such values are expected and not an indication of
problems, it is up to the user to check for such values if they can be
generated and when generated indicate a problem.

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

