
Subject: The cubic keyword in interpolate
Posted by sterner on Mon, 13 Jun 1994 13:34:15 GMT
View Forum Message <> Reply to Message

In an earlier post I gave a warning about using the CUBIC keyword in
 INTERPOLATE, CONGRID, ROT:

> Warning: INTERPOLATE has a keyword to do cubic interpolation.
> It's easy to use, just add /cubic to the call.
> However, don't assume this is better. Check it very carefully before
> you rely on it. A number of people have reported problems with /cubic
> in other routines (CONGRID, ROT). If the result of the cubic interp.
> is carefully examined it will be found to have high frequency wiggles
> in the values (with a period of roughly 20 some pixels for the case
> I just checked). As of V3.6 beta this problem still exists (for
> INTERPOLATE anyway). The default, bilinear, works very well.

 I have been advised that this option is actually working correctly. I
 now believe that to be true. However I suspect a number of people
 misunderstood how this option actually works. Here is some code
 to demonstrate:

 x=indgen(4) 			; Some random data.
 y=[1.,2,5,10]
 x2=findgen(100)/100.*3.		; Interpolate between points.
 yl=interpolate(y,x2)		; Linear (L).
 yn=interpolate(y,round(x2))	; Nearest Neighbor (NN).
 yc=interpolate(y,x2,/cubic)	; Cubic convolution (CC).
 plot,x,y			; Original data (4 points).
 oplot,x2,yn			; NN
 oplot,x2,yl,psym=-4		; L
 oplot,x2,yc			; CC

 The four original points are connected by 3 straight lines.
 Nearest Neighbor interpolation, yn, is the worst case.
 Linear interpolation, yl, is better.
 Cubic interpolation, yc, might be expected to give a nice smooth curve
 through the points, but that is a misunderstanding. The cubic
 interpolation is working correctly but it is not a spline fit.

 The following code plots the expected curve.

 r=nr_spline(x,y)		; Set up spline.
 ycs=nr_splint(x,y,r,x2)		; Do spline interpolation.
 oplot,x2,ycs

 Unfortunately this doesn't help for 2-d interpolation.

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=17
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=1614&goto=2270#msg_2270
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=2270
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 Besides making processed images look better, the cubic convolution
 option does have other useful applications. Here is some code that
 shows how high spatial frequencies are restored better using the
 /cubic keyword:

 x = findgen(1000)			; Generate a curve.
 y = sin(x/(1+x/200.))
 plot,x,y				; Plot entire curve.

 Just look at the high frequency part of the data:

 plot,x,y,xran=[0,50],yran=[-1.2,1.2]

 Note that it is somewhat ragged due to undersampling. Now interpolate
 up to a larger number of points using /cubic:

 x2 = findgen(20000)/20.
 y2 = interpolate(y,x2,/cubic)
 oplot,x2,y2

 Note that the interpolated curve appears better and might also be more
 useful for locating peaks. The peaks are not exactly where they
 should be but are closer than the uninterpolated peaks. Also note
 that the interpolated curve overshoots the true values as can be
 better seen by adding horizontal lines:

 plots,[0,1000],[1,1]
 plots,[0,1000],-[1,1]

 Ray Sterner sterner@tesla.jhuapl.edu
 Johns Hopkins University North latitude 39.16 degrees.
 Applied Physics Laboratory West longitude 76.90 degrees.
 Laurel, MD 20723-6099

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

