
Subject: IDLWAVE 4.7/Tutorial
Posted by dominik on Fri, 08 Dec 2000 13:18:49 GMT
View Forum Message <> Reply to Message

Hi, I have release IDLWAVE 4.7. Sorry that this happens so quickly
after 4.6, but the recent discussion here has prompted a new way of
assigning keys to debugging commands which I would like to get out
now.

Also, JD and I have been cooking up a tutorial which was requested by
several contributions here. While it may not quite be simple enough
for David ;-), I hope it will be OK for most people who have used
Emacs before. Feedback on the Tutorial is welcome. The Tutorial
should work with 4.6 except in one or two details. The keybinding
methods described only work with 4.7.

- Carsten

Getting Started (Tutorial)

Lession I: Development Cycle
============================

 The purpose of this tutorial is to guide you through a very basic
development cycle with IDLWAVE. We will type a simple program into a
buffer and use the shell to compile, debug and run this program. On the
way we will use the most important commands in IDLWAVE. Note however
that there is much more funtionality available in IDLWAVE than we cover
here, and it will pay off greatly if eventually you go further and read
the whole manual.

 I assume that you have access to Emacs or XEmacs with the full
IDLWAVE package including online help (*note Installation::). I also
assume that you are familiar with Emacs and can read the nomenclature
of key presses in Emacs (in particular, `C' stands for <CONTROL> and
`M' for <META> (often the <ALT> key carries this functionality)).

 Open a new source file by typing

 C-x C-f tutorial.pro <RET>

 A buffer for this file will pop up, and it should be in IDLWAVE mode.
You can see this by looking at the mode line, just below the editing
window. Also, the menu bar should contain entries `IDLWAVE' and
`Debug'.

Page 1 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3558
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12787&goto=22813#msg_22813
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=22813
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 Now cut-and-paste the following program, also available as
`tutorial.pro' in the IDLWAVE distribution.

 function daynr,d,m,y
 ;; compute a sequence number for a date
 ;; works 1901-2099.
 if y lt 100 then y = y+1900
 if m le 2 then delta = 1 else delta = 0
 m1 = m + delta*12 + 1
 y1 = y * delta
 return, d + floor(m1*30.6)+floor(y1*365.25)+5
 end

 function weekday,day,month,year
 ;; compute weekday number for date
 nr = daynr(day,month,year)
 return, nr mod 7
 end

 pro plot_wday,day,month
 ;; Plot the weekday of a date in the first 10 years of this century.
 years = 2000,+indgen(10)
 wdays = intarr(10)
 for i=0,n_elements(wdays)-1 do begin
 wdays[i] = weekday(day,month,years[i])
 end
 plot,years,wdays,YS=2,YT="Wday (0=sunday)"
 end

 The indentation probably looks funny, since it's different from the
settings you use, so use the <TAB> key in each line to automatically
line it up (or more quickly _select_ the entire buffer with `C-x h'
followed by `M-C-\'). Notice how different syntactical elements are
highlighted in different colors, if you have set up support for
font-lock.

 Let's check out two particular editing features of IDLWAVE. Place
the cursor after the `end' statement of the `for' loop and press <SPC>.
IDLWAVE blinks back to the beginning of the block and changes the
generic `end' to the specific `endfor' automatically. Now place the
cursor in any line you would like to split into two and press
`M-<RET>'. The line is split at the cursor position, with the
continuation `$' and indentation all taken care of. Use `C-/' to undo
the last change.

 The procedure `plot_wday' is supposed to plot the weekday of a given
date for the first 10 years of the 21st century. I have put in a few
bugs which we are going to fix now.

Page 2 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 First, let's launch the IDLWAVE shell. You do this with the command
`C-c C-s'. The Emacs window will split and display IDL running in a
shell interaction buffer. Type a few commands like `print,!PI' to
convince yourself that you can work there like in an xterminal, or the
IDLDE. Use the arrow keys to cycle through your command history. Are
we having fun now?

 Now go back to the source window and type `C-c C-d C-c' to compile
the program. If you watch the shell buffer, you see that IDLWAVE types
`.run tutorial.pro' for you. But the compilation fails because there
is a comma in the line `years=...'. The line with the error is
highlighted and the cursor positioned at the error, so remove the comma
(you should only need to hit Delete!). Compile again, using the same
keystrokes as before. Notice that the file is saved for you. This
time everything should work fine, and you should see the three routines
compile.

 Now we want to use the command to plot the weekdays for January 1st.
We could type the full command ourselves, but why do that? Go back to
the shell window, type `plot_' and hit <TAB>. After a bit of a delay
(while IDLWAVE initializes its routine info database), the window will
split to show all procedures it knows starting with that string, and
`plot_wday' should be one of them. Saving the buffer was enough to
tell IDLWAVE about this new routine. Click with the middle mouse
button on `plot_wday' and it will be copied to the shell buffer, or if
you prefer, add `w' to `plot_' to make it unambiguous, hit <TAB>, and
the full routine name will be completed. Now provide the two arguments:

 plot_wday,1,1

 and press <RET>. This fails with an error message telling you the
`YT' keyword to plot is ambiguous. What are the allowed keywords
again? Go back to the source window and put the cursor into the `plot'
line, and press `C-c ?'. This pops up the routine info window for the
plot routine, which contains a list of keywords, and the argument list.
Oh, we wanted `YTITLE'. Fix that up. Recompile with `C-c C-d C-c'.
Jump back into the shell with `C-c C-s', press the <UP> arrow to recall
the previous command and execute again.

 This time we get a plot, but it is pretty ugly - the points are all
connected with a line. Hmm, isn't there a way for `plot' to use
symbols instead? What was that keyword? Position the cursor on the
plot line after a comma (where you'd normally type a keyword), and hit
`M-<Tab>'. A long list of plot's keywords appears. Aha, there it is,
`PSYM'. Middle click to insert it. An `=' sign is included for you
too. Now what were the values of `PSYM' supposed to be? With the
cursor on or after the keyword, press `M-?' for online help

Page 3 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

(alternatively, you could have right clicked on the colored keyword
itself in the completion list). The online help window will pop up
showing the documentation for the `PYSM' keyword. Ok, let's use
diamonds=4. Fix this, recompile (you know the command by now: `C-c C-d
C-c', go back to the shell (if it's vanished, you know the command to
recall it by now: `C-c C-s') and execute again. Now things look pretty
good.

 Lets try a different day - how about April fool's day?

 plot_wday,1,4

 Oops, this looks very wrong. All April fool's days cannot be
Fridays! We've got a bug in the program, perhaps in the `daynr'
function. Lets put a breakpoint on the last line there. Position the
cursor on the `return, d+...' line and press `C-c C-d C-b'. IDL sets a
breakpoint (as you see in the shell window), and the line is
highlighted in some way. Back to the shell buffer, re-execute the
previous command. IDL stops at the line with the breakpoint. Now hold
down the SHIFT key and click with the middle mouse button on a few
variables there: `d', `y', `m', `y1', etc. Maybe `d' isn't the correct
type. CONTROL-SHIFT middle-click on it for help. Well, it's an
integer, so that's not the problem. Aha, `y1' is zero, but it should
be the year, depending on delta. Shift click `delta' to see that it's
0. Below, we see the offending line: `y1=y*delta...' the
multiplication should have been a minus sign! So fix the line to

 y1 = y - delta

 Now remove all breakpoints: `C-c C-d C-a'. Recompile and rerun the
command. Everything should now work fine. How about those leap years?
Change the code to plot 100 years and see that every 28 years, the
sequence of weekdays repeats.

Lession II: Customization
=========================

 Emacs is probably the most customizable piece of software available,
and it would be a shame if you did not make use of this and adapt
IDLWAVE to your own preferences. Customizing Emacs or IDLWAVE means
that you have to set Lisp variables in the `.emacs' file in your home
directory. This looks scary to many people because of all the
parenthesis. However, you can just cut and paste the examples given
here and work from there.

 Lets first use a boolean variable. These are variables which you
turn on or off, much like a checkbox. A value of `t' means on, a value
of `nil' means off. Copy the following line into your `.emacs' file,

Page 4 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

exit and restart Emacs.

 (setq idlwave-reserved-word-upcase t)

 When this option is turned on, each reserved word you type into an
IDL source buffer will be converted to upper case when you press <SPC>
or <RET> right after the word. Try it out! `if' changes to `IF',
`begin' to `BEGIN'. If you don't like this behavior, remove the option
again from your `.emacs' file.

 Now I bet you have your own indentation preferences for IDL code.
For example, I like to indent the main block of an IDL program a bit,
different from the conventions used by RSI. Also, I'd like to use only
3 spaces as indentation between `BEGIN' and `END'. Try the following
lines in `.emacs'

 (setq idlwave-main-block-indent 2)
 (setq idlwave-block-indent 3)
 (setq idlwave-end-offset -3)

 Restart Emacs, take the program we developed in the first part of
this tutorial and re-indent it with `C-c h' and `M-C-\'. You probably
want to keep these lines in `.emacs', with values adjusted to your
likings. If you want to get more information about any of these
variables, type, e.g., `C-h v idlwave-main-block-indent <RET>'. To
find which variables can be customized, look for items marked `User
Option:' in the manual.

 If you cannot wrap your head around this Lisp stuff, there is
another, more user-friendly way to customize all the IDLWAVE variables.
You can access it through the IDLWAVE menu in one of the `.pro'
buffers, option `Customize->Browse IDLWAVE Group'. Here you'll be
presented with all the various variables grouped into categories. You
can navigate the hierarchy (e.g. Idlwave Code Formatting->Idlwave Main
Block Indent), read about the variables, change them, and `Save for
Future Sessions'. Few of these variables need customization, but you
can exercise considerable control over IDLWAVE's functionality with
them.

 Many people I talk to find the key bindings used for the debugging
commands too long and complicated. Do I always have to type `C-c C-d
C-c' to get a single simple command? Due to Emacs rules and
conventions I cannot make better bindings by default, but you can.
First, there is a way to assign all debugging commands in a single sweep
to other combinations. The only problem is that we have to use
something which Emacs does not need for other important commands. A
good option is to execute debugging commands by holding down <CONTROL>
and <SHIFT> while pressing a single character: `C-S-b' for setting a

Page 5 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

breakpoint, `C-S-c' for compiling the current source file, `C-S-a' for
deleting all breakpoints. You can have this with

 (setq idlwave-shell-debug-modifiers '(shift control))

 If you have a special keyboard with for example a <HYPER> key, you
could use

 (setq idlwave-shell-debug-modifiers '(hyper))

 instead to get compilation on `H-c'.

 You can also assign specific commands to function keys. This you
must do in the _mode-hook_, a special function which is run when a new
buffer gets set up. Keybindings can only be done when the buffer
exists. The possibilities for key customization are endless. Here we
set function keys f5-f8 to common debugging commands.

 ;; First for the source buffer
 (add-hook 'idlwave-mode-hook
 (lambda ()
 (local-set-key [f5] 'idlwave-shell-break-here)
 (local-set-key [f6] 'idlwave-shell-clear-current-bp)
 (local-set-key [f7] 'idlwave-shell-cont)
 (local-set-key [f8] 'idlwave-shell-clear-all-bp)))
 ;; Then for the shell buffer
 (add-hook 'idlwave-shell-mode-hook
 (lambda ()
 (local-set-key [f5] 'idlwave-shell-break-here)
 (local-set-key [f6] 'idlwave-shell-clear-current-bp)
 (local-set-key [f7] 'idlwave-shell-cont)
 (local-set-key [f8] 'idlwave-shell-clear-all-bp)))

Lession III: Library Catalog
============================

 We have already used the routine info display in the first part of
this tutorial. This was the key `C-c ?' which displays information
about the IDL routine near the cursor position. Wouldn't it be nice to
have the same available for your own library routines and for the huge
amount of code in major extension libraries like JHUPL or the IDL-Astro
library? To do this, you must give IDLWAVE a chance to study these
routines first. We call this _Building the library catalog_.

 From the IDLWAVE entry in the menu bar, select `Routine Info/Select
Catalog Directories'. If necessary, start the shell first with `C-c
C-s' (*note Starting the Shell::). IDLWAVE will find out about the IDL
`!PATH' variable and offer a list of directories on the path. Simply

Page 6 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

select them all (or whichever you want) and click on the `Scan&Save'
button. Then go for a cup of coffee while IDLWAVE collects information
for each and every IDL routine on your search path. All this
information is written to the file `.idlcat' in your home directory and
will from now one be automatically loaded whenever you use IDLWAVE.
Try to use routine info (`C-c ?') or completion (`M-<TAB>') while on
any routine or partial routine name you know to be located in the
library. E.g., if you have scanned the IDL-Astro library:

 a=readf<M-<TAB>>

 expands to `readfits('. Then try

 a=readfits(<C-c ?>

 and you get:

 Usage: Result = READFITS(filename, header, heap)
 ...

 I hope you made it until here. Now you are set to work with IDLWAVE.
On the way you will want to change other things, and to learn more about
the possibilities not discussed in this short tutorial. Read the
manual, look at the documentation strings of interesting variables (with
`C-h v idlwave<-variable-name> <RET>') and ask the remaining questions
on `comp.lang.idl-pvwave'.

Page 7 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

