
Subject: Re: widget_control and group_leader
Posted by John-David T. Smith on Fri, 22 Dec 2000 23:42:23 GMT
View Forum Message <> Reply to Message

nrk5@cornell.edu wrote:
>
> Lets say I have two widgets, A and B. There are two links between the
> two:
> 1) A.top and B.top are eachother's groupleaders, and
> 2) A uses common blocks and has a variable 'foreign_event_handler' that
> is set by B.
>
> So, when an event is generated by A and the 'Use Foreign Event Handler'
> option is set in the widget, events generated by A go to whatever B set
> 'foreign_event_handler' using:
>
> widget_control, id, event_pro=foreign_event_handler
>
> Things to note:
> 1) A can't be modified at all. Nothing added or changed. (ie. no more
> variables)
> 2) B is an object widget and needs to set its structure variables to
> variables in the events generated by A.
> 3) In B::init, B.top has a uvalue of self.
>
> The question is, how can I use foreign_event_handler to get to 'B self'
> from an event generated by A? My thought was:
>
> PRO foreign_event_handler, eventFromA
> widget_control, eventFromA.top, get_Group_Leader = BtopID
> widget_control, BtopID, get_Uvalue = objectReferenceToB
> ...
> END
>
> And now I would be in business. But, is there such as thing as
> get_group_leader? Is there another way to do this?
>
> I know that not being able to change A doesn't help, else there would be
> a million solutions, but its not my program. The only minor change I
> might be able to make is to create a generic variable in A's common
> block that could be set to whatever, but then I would have to define it
> as a string or a long, and that would restrict its use.

Hi Nidhi, how's the weather in Fargo? Glad to see you didn't take my
advice and are hard at work. Since I know a little bit about this
project, I'll explain this for everyone:

A. is a premade, heavily common-block oriented display program.

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3389
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12807&goto=22927#msg_22927
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=22927
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

B. is an extension to A. (or more than one) which will receive events
from A. (mostly widget_draw???). Rewriting A. is not time-productive.

Obviously, the first reaction out of this crowd will be "Common
Blocks!!! Off with her head, accursed practice of vile witchery!" But
here the goose came fully stuffed, so even if you don't like turnips,
you'll have to make something of it.

The first thing to note is that there needn't be just one event
handler. Sure, there is one and only one place where IDL will
automatically deliver an event for you, but that event can be forwarded
around anywhere you wish, and changed along the way, if you so desire.
There's nothing to say a single motion event can't simultaneously
display a zoomed image, update a data/coordinate status line, and
stretch a colormap, all at once, even from within different entire
widget trees or programs. You obviously have to be a bit careful
throwing all these events around, but in practice it's no problem. This
means, you never have to use:

widget_control, event_pro=foo

You can just process and dispatch events from within the already
existing widget handler. This also obviates your "Foreign Event
Handler" button, as this can all be automatic, and you can be using
those events all over the place, whenever appropriate.

What I would recommend in this case is set up a foreign event handler
method, since the foreign widget is an object. That is, have a
routine to sign up for events from A. from within B., like this:

a_signup, self, "Handle_A_Events", /Button, /TRACKING

or some such. Then, each "foreign" object can sign up for whatever
events it wants. This can obviously be static or dynamic (i.e., objects
can register for certain events, and change that during runtime). All
you'd need to add to A. is code to manage this "signup" list (add,
delete entries -- a pointer on A.'s common block would be most flexible
here), and a small function which uses:

 call_method,method,obj, ev

to dispatch the event from within A's standard event handler, based on
the events requested (B would turn on and turn off the event spigot when
appropriate). If you'd like to make it quite simple (e.g. no need to
expand it later to more than one type of foreign object widget),
dispense with the optional events, and just send them all. So, at the
most basic level, it's the same as having your foreign_event_handler,

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

but just as foreign_event_method instead (which necessitates storing an
object on which to call the method).

The important point to remember is that when you are explicity
redirecting events from the standard IDL up-the-widget-tree
widget_event() handling, there is no benefit had by keeping the same
event handler format (e.g. events are not "swallowed" or "passed on"
outside the tree in which they originated). So you may as well use
events however is convenient. Just to appease David I should note that
you can use "widget_control, id, SEND_EVENT=event" to effectively splice
two widget trees together, and royally confuse yourself.

One more wrinkle: What if you didn't want to modify A's code at all?
So you could drop in new versions as they become available, for
instance. All you allow yourself to do is change the event handler for
A, after it sets itself up (how you get A's TLB ID is up to you). In
this case, a special purpose event broker (call it C.) could sit between
A and the rest of the world. It could interpose it's own procedure as
the primary event handler, and feed both A., and all the B.'s. It could
also serve as a proxy for A. when signing up different types of events,
etc. (i.e., the B's sign up with C., not A.!)

Whatever you do, make it 1 notch more general than you think you need,
and you'll thank yourself later.

JD

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

