
Subject: Re: Which like command for IDL?
Posted by Vapuser on Fri, 05 Jan 2001 21:42:04 GMT
View Forum Message <> Reply to Message

Sorry for superseding my post, but I had left a rant in about
routine_info/resolve_routine that I really didn't want to send,
since I'd discovered some information about those two routines that
made my rant a bit too splenetic, if you know what I mean.

Anyway, I do have some problems with those two routines which I'll
indicate below.

davidf@dfanning.com (David Fanning) writes:

> David Fanning (davidf@dfanning.com) writes:
>
>> It is a moot point anyway, in this case, since the program
>> uses some of the neat new SWITCH, BREAK, etc. stuff that
>> comes in IDL 5.4, and will not compile in earlier versions.
>
> Interestingly, the FILE_WHICH program supplied in IDL 5.4
> calls a built-in, but undocumented, program STRTOK, which
> appears to separate the path subdirectories based on
> a delimiter supplied to the function. I'll leave it
> to the expert sleuths in the group to tell us what it
> *really* does. :-)
>

 <snip>

 If it's like the C function of the same name, it 'tokenizes' the
 string using any delimiter which appears in a particular set, which
 is input to the function. It's like repeated calls to strsplit with
 different delimiters.

 So, *IIRC* you could say 'stuff=strtok(path,':/\') and it would
 split the string up regardless of whether you were on a Windows of
 Unix machine. (I forget what the delimiter is for Vaxen)

 By the way, here's my entry into the (pre 5.4) field. It works by
 trying it as a system routine first, then it looks in the output
 from help,/source for an *exact* match of the input name (stopping
 at the first, see my <rant> below), then an object (if it has a ::
 in it) then procedure, a function and, if all these fail, it appends
 a '__define' on the input name and tries that, just in case someone
 just passed the name of the object it.

Page 1 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2827
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12862&goto=23079#msg_23079
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=23079
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 It will even work if the object method is defined in it's own file,
 provided one follows the obj__method.pro naming convention.

 It has a *whole* slew (well, two actually) of GOTOs which I couldn't
 find a way to get rid of, mostly because
 resolve_routine/routine_info need to know whether the thing being
 resolved/asked-about is a procedure or a function beforhand.

 <rant>

 After I rewrote this routine to be a bit smarter I came to a better
 understanding of the problems associated with
 resolve_routine/routine_info. But I still think that the proper way
 to do this sort of thing is to ere on the side of accomodating the
 user and let them resolve necessary ambiguities rather then
 requiring them to do it *before* the call. (of course, in order to
 follow my own advice, I'll have to rewrite my `which.pro', which I
 am going to do in my copious free time!) If the user askes for
 information about two routines with the same name, one a function
 and one a procedure, I think routine_info should return information
 about *both* along with some way to tell which is which and let the
 user decide which he/she wants. Similarly, I wonder why routine_info
 doesn't resolve the routine(s) itself, instead of requiring it be
 done by the user before hand. If there is ambiguity, *resolve both*
 and default to the previous lemma.

 If anyone can tell me why this wouldn't be a better way to do it,
 please do so but I don't see any *real* reason to do it except that
 it's harder to write the code. (and that's only a quasi-real reason ;->)

 </rant>

William Daffer
;+
; NAME: Which
; $Id: which.pro,v 1.2 2001/01/05 21:03:04 vapuser Exp $
; PURPOSE: Like the Unix 'which' program. Tells you which source file
; a given routine is in.
;
; AUTHOR: William Daffer
;
; CATEGORY: Utility
;
; CALLING SEQUENCE: which,'routine'
;
; INPUTS: routine: An IDL procedure/function
;
; OPTIONAL INPUTS: None

Page 2 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;	
; KEYWORD PARAMETERS: None
;
; OUTPUTS: Prints one line with the following info
;
; "routine: System routine" if it's a system routine. -- or --
; "routine: path" if it finds the routine -- or --
; "routine: Doesn't exist" if the previous two fail.
;
;
; OPTIONAL OUTPUTS: none
;
; COMMON BLOCKS: none
;
; SIDE EFFECTS: The routine is compiled along with any possible
; routines contained in the object definition, if this
; circumstance applies.
;
; RESTRICTIONS:
;
; PROCEDURE: Look in the system routines for this name, if not there,
; look in the output from help,/source, if it isn't there,
; try various calls to resolve_routine and routine_info.
; If `routine' has a '::' in it (e.g. foo::bar), `which'
; will resolve will be foo__define and see if bar is a
; method defined in that file, otherwise it will assume
; that the routine is defined in the file `foo__bar.'
;
; If these no '::' and `routine' doesn't resolve either as
; a procedure or a function, `which' will attempt to
; revolve 'routine__define' and see if someone just passed
; an object name in.
;
;
;
; EXAMPLE:
;
; IDL> which,'foo'
; foo: /path/to/foo.pro
;
; IDL> which,'foo::init'
; foo::init: /path/to/foo__define.pro
;
; if init is defined in foo__define.pro
;
; -- or --
;
; IDL> which,'foo::init'

Page 3 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; foo::init: /path/to/foo__init.pro
;
; if init is defined in foo__init.pro
;
; IDL> which,'contour'
; contour: SYSTEM ROUTINE!
;
; IDL> which,'foobar'
; foobar: DOESN'T EXIST!
;
; MODIFICATION HISTORY:
;
; $Log: which.pro,v $
; Revision 1.2 2001/01/05 21:03:04 vapuser
; Reworked completely
;
; Revision 1.1 1999/10/06 21:54:32 vapuser
; Initial revision
;
;
;Copyright (c) 1999, William Daffer
;-

PRO which, procname
 usg = "Usage: which,`procname' (with `procname' a nonempty STRING)"
 IF n_params() LT 1 OR n_elements(procname) EQ 0 THEN BEGIN
 Message,USG,/cont
 return
 ENDIF

 IF size(procname,/type) NE 7 THEN BEGIN
 Message,usg,/cont
 return
 ENDIF

 tproc = strupcase(strtrim(procname,2))

 IF strlen(tproc) EQ 0 THEN BEGIN
 Message,usg,/cont
 return
 ENDIF
 savequiet = !quiet
 !quiet = 1
 system_routines = routine_info(/system)

 catch,/cancel
 errcnt = -1
 is_func = 0

Page 4 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 is_obj = 0

 ;; Look in the SYSTEM routines first
 pos = strpos(system_routines, tproc)
 x = where(pos NE -1,nx)
 IF nx NE 0 THEN BEGIN
 found = 0
 ii = 0
 REPEAT BEGIN
 ;; check for possible false positives!
 tmp = strcompress(system_routines[x[ii]])
 tmp = strsplit(tmp,' ',/extract)
 test = tmp[0]
 IF test EQ tproc THEN found = 1
 ii = ii+1
 ENDREP UNTIL found OR ii GE nx
 IF found THEN BEGIN
 outmsg = procname + ': SYSTEM ROUTINE!'
 print,outmsg
 !quiet = savequiet
 return
 ENDIF
 ENDIF

 ;; Then in the already compiled routines

 help,/source,out=out
 out = strupcase(out)
 pos = strpos(out,tproc)
 x = where(pos NE -1, nx)
 found = 0
 ii = 0

 IF nx NE 0 THEN BEGIN
 REPEAT BEGIN
 ;; check for false positives!
 tmp = strcompress(out[x[ii]])
 tmp = strsplit(tmp,' ',/extract)
 test = tmp[0]
 IF test EQ tproc THEN found = 1
 ii = ii+1
 ENDREP UNTIL found OR ii GE nx
 IF found THEN BEGIN
 catch, error
 IF error NE 0 THEN BEGIN
 catch,/cancel
 is_func = 1
 ENDIF

Page 5 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 info = routine_info(tproc,/source,FUNC=is_func)
 outmsg = info.path
 ENDIF
 ENDIF

 ;; And finally, try to compile it!

 errcnt = -1
 is_func = 0
 is_obj = 0

 IF NOT found THEN BEGIN

 IF strpos(procname,'::') NE -1 THEN BEGIN

 ;; Damn! object reference!

 tmp = strsplit(tproc,':',/extract)
 procs_to_resolve = [tmp[0] + "__DEFINE", procname]
 message,/reset

 errcnt2 = -1
 is_func2 = 0

 catch, error1
 IF error1 NE 0 THEN BEGIN
 errcnt2 = errcnt2 + 1
 CASE errcnt2 OF
 0: BEGIN
 is_func2 = 1
 message,/reset
 END
 1: GOTO, own_file
 ENDCASE
 ENDIF
 IF errcnt2 LT 0 THEN $
 resolve_routine,procs_to_resolve[0] ; the __define routine, always a proc

 info = routine_info(procname,/source,func=is_func2)

 ;; If we've made it this far, it's defined in the
 ;; tmp[0]__define file, so go to the end

 outmsg = info.path
 GOTO, endit

 OWN_FILE:

Page 6 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 errcnt2 = -1
 is_func2 = 0
 catch,error2
 IF error2 NE 0 THEN BEGIN
 error2 = 0
 errcnt2 = errcnt2 + 1
 CASE errcnt2 OF
 0: BEGIN
 is_func2 = 1
 message,/reset
 END
 1: BEGIN
 print, procname + ": DOESN'T EXIST!"
 return
 END
 ENDCASE
 ENDIF
 resolve_routine,procs_to_resolve[1],is_func=is_func2 ;
 info = routine_info(procname,/source,func=is_func2)
 outmsg = info.path

 ENDIF ELSE BEGIN

 ;; Doesn't have a "::" in it. May still be an object name, though!
 catch, error
 IF error NE 0 THEN BEGIN
 errcnt = errcnt+1
 CASE errcnt OF
 0: BEGIN
 ; won't compile as a procedure,
 ; try as funtion
 is_func = 1
 message,/reset
 END
 1: BEGIN
 is_obj = 1
 is_func = 0
 tproc = tproc + "__DEFINE"
 message,/reset
 ;resolve_routine, tproc[jj]
 END
 ELSE : BEGIN
 ;; can't resolve it as either procedure
 ;; function or object.
 ;; Must not exist!
 !quiet = savequiet
 print, procname + ": DOESN'T EXIST!"
 return

Page 7 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 END
 ENDCASE
 ENDIF
 resolve_routine, tproc, is_func= is_func

 info = routine_info(tproc,/source,FUNC=is_func)
 IF !error_state.code NE 0 THEN BEGIN
 !quiet = savequiet
 outmsg = procname + ": DOESN'T EXIST!"
 print, outmsg
 return
 ENDIF
 outmsg = info.path
 ENDELSE
 ENDIF

 ENDIT:
 outmsg = procname + ': ' + outmsg
 print, outmsg
 !quiet = savequiet
 return

END

--
William Daffer: 818-354-0161: William.Daffer@jpl.nasa.gov

Page 8 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

