Subject: Re: Oddball Event Handling (Longer than it Ought to Be)
Posted by davidf on Sun, 07 Jan 2001 02:40:48 GMT

View Forum Message <> Reply to Message

Michael Plonski (mplonski@aer.com) writes:

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

| had played around with an object based widget system a while back, but
then | moved on to other things. The basic design was an object wrapper
for any well behaved widget (one that left user value for the user).

THe user value was used to store object information. Each widget had
both an ow (object widget) parent and a regular widget parent and they
did not have to be the same (useful if you just wanted a widget parent

for formatting the widget on the screen but not for functionality). The
base object wrapper had all the neccessary methods so that events could
be assigned to object methods, by revectoring the normal widget event
handler. | built a series of basic ow, including a generic gui object

that had an image ow, status lines ow, toolbar ow, etc. Each of these
componets was its own ow, so that you could inherit the ow and then add
new capabilities to it. This is very hard to do with regular widget

unless you cut and paste and then rewrite the widget functions. It had

a nice feature that when you revectored the events, it stored the state

of the object widget. The basic design was that an image object widget
should not respond to anything other than window events - resize,
redraw, etc.. When a user selected something like draw a line from one
of the toolbar ow, it would ask the gui ow for the ow pointer of the

image ow, and then execute a method on the image ow to revector the
mouse click events. The method for drawing lines was in the toolbar
widget where it belongs and not in the image window. For example there
was a different toolbar button for a constrained line draw, so that the

line could only be drawn at a specific angle. The image window had no
knowledge of these operations which is what made it reusable with any
toolbar ow. The image ow would automatically push its state onto a
stack, when it revectored the event handler. This let the event be
revectored later, like only respond to clicks and not motion, by some
other drawing object widget. As each ow completed, it would execute a
method on the image ow to return event controller which would then pop
the previous state from the stack. The design was kind of nice in that

an image_ow had no event handlers for dealing with mouse clicks, since a
generic image display shouldn't deal with mouse. It is applications

that use the image ow that deal with the mouse. These applications were
in effect, toolbar ow that could be added into the gui ow so that you

could reuse the generic image services of an image ow. As you added ow
toolbars into the gui, they would override the image ow events when they
were active. Similiarly, if they wanted to report status, they would

ask the gui ow for an object pointer to a status ow, and then send their
status comment to that object. THis made for very modular gui
development. What was really nice is that since the widgets were now
objects you could inherit from them and add functionality. FOr example

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12846&goto=23168#msg_23168
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=23168
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

the base object widget wrapper had a generic method to handle event so
that they would not go untrapped. After you inherited from this ow, you
would override the event handler to be what you needed to make a generic
toolbar widget. A genric toolbar widget could then be inherited to make
a specific toolbar widget. What was nice in the object widget approach
is that you would inherit new features. Initially, | had only designed

the revector event handler method to save the current state. Later on |
found it useful to push the state on the stack, so that you could

revector a revectored event and still roll back to the initial state.
Changinf this is the base object widget wrapper propagated to all events
since this is the base class for all later inheritence. Since there is

a parallel widget tree and object tree, destroying either the top level
object or widget would destroy both the widget and object tree. The
base level object widget wrapper took care of these kinds of things so
that all object widget that inherited from it would fit within the

parent tree structure. No need to go and write what happens when a
widget is destroyed for each individual widget since you now just

inherit this functionality | built a working application to demostrate

that the whole infrastructure worked and it has been extremely reliable,
no dangling widgets or objects after creating and deleteing guis. |

just thought | give you a little input if you are going to start down

the same path of making object widgets.

VVVVVVVVVVVVVVVVVYVYVYVYVYV

| can't wait to read the book! )
Cheers,
David

P.S. Let's just say | thought James Joyce's Ulysses
was a hard read.

David Fanning, Ph.D.

Fanning Software Consulting

Phone: 970-221-0438 E-Mail: davidf@dfanning.com

Coyote's Guide to IDL Programming: http://www.dfanning.com/
Toll-Free IDL Book Orders: 1-888-461-0155

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

