
Subject: Re: Oddball Event Handling (Longer than it Ought to Be)
Posted by davidf on Sun, 07 Jan 2001 02:40:48 GMT
View Forum Message <> Reply to Message

Michael Plonski (mplonski@aer.com) writes:

> I had played around with an object based widget system a while back, but
> then I moved on to other things. The basic design was an object wrapper
> for any well behaved widget (one that left user value for the user).
> THe user value was used to store object information. Each widget had
> both an ow (object widget) parent and a regular widget parent and they
> did not have to be the same (useful if you just wanted a widget parent
> for formatting the widget on the screen but not for functionality). The
> base object wrapper had all the neccessary methods so that events could
> be assigned to object methods, by revectoring the normal widget event
> handler. I built a series of basic ow, including a generic gui object
> that had an image ow, status lines ow, toolbar ow, etc. Each of these
> componets was its own ow, so that you could inherit the ow and then add
> new capabilities to it. This is very hard to do with regular widget
> unless you cut and paste and then rewrite the widget functions. It had
> a nice feature that when you revectored the events, it stored the state
> of the object widget. The basic design was that an image object widget
> should not respond to anything other than window events - resize,
> redraw, etc.. When a user selected something like draw a line from one
> of the toolbar ow, it would ask the gui ow for the ow pointer of the
> image ow, and then execute a method on the image ow to revector the
> mouse click events. The method for drawing lines was in the toolbar
> widget where it belongs and not in the image window. For example there
> was a different toolbar button for a constrained line draw, so that the
> line could only be drawn at a specific angle. The image window had no
> knowledge of these operations which is what made it reusable with any
> toolbar ow. The image ow would automatically push its state onto a
> stack, when it revectored the event handler. This let the event be
> revectored later, like only respond to clicks and not motion, by some
> other drawing object widget. As each ow completed, it would execute a
> method on the image ow to return event controller which would then pop
> the previous state from the stack. The design was kind of nice in that
> an image_ow had no event handlers for dealing with mouse clicks, since a
> generic image display shouldn't deal with mouse. It is applications
> that use the image ow that deal with the mouse. These applications were
> in effect, toolbar ow that could be added into the gui ow so that you
> could reuse the generic image services of an image ow. As you added ow
> toolbars into the gui, they would override the image ow events when they
> were active. Similiarly, if they wanted to report status, they would
> ask the gui ow for an object pointer to a status ow, and then send their
> status comment to that object. THis made for very modular gui
> development. What was really nice is that since the widgets were now
> objects you could inherit from them and add functionality. FOr example

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12846&goto=23168#msg_23168
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=23168
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> the base object widget wrapper had a generic method to handle event so
> that they would not go untrapped. After you inherited from this ow, you
> would override the event handler to be what you needed to make a generic
> toolbar widget. A genric toolbar widget could then be inherited to make
> a specific toolbar widget. What was nice in the object widget approach
> is that you would inherit new features. Initially, I had only designed
> the revector event handler method to save the current state. Later on I
> found it useful to push the state on the stack, so that you could
> revector a revectored event and still roll back to the initial state.
> Changinf this is the base object widget wrapper propagated to all events
> since this is the base class for all later inheritence. Since there is
> a parallel widget tree and object tree, destroying either the top level
> object or widget would destroy both the widget and object tree. The
> base level object widget wrapper took care of these kinds of things so
> that all object widget that inherited from it would fit within the
> parent tree structure. No need to go and write what happens when a
> widget is destroyed for each individual widget since you now just
> inherit this functionality I built a working application to demostrate
> that the whole infrastructure worked and it has been extremely reliable,
> no dangling widgets or objects after creating and deleteing guis. I
> just thought I give you a little input if you are going to start down
> the same path of making object widgets.

I can't wait to read the book! :^)

Cheers,

David

P.S. Let's just say I thought James Joyce's Ulysses
was a hard read.

--
David Fanning, Ph.D.
Fanning Software Consulting
Phone: 970-221-0438 E-Mail: davidf@dfanning.com
Coyote's Guide to IDL Programming: http://www.dfanning.com/
Toll-Free IDL Book Orders: 1-888-461-0155

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

