Subject: Re: Reading GrADS data file in IDL Posted by msienkiewicz on Mon, 29 Jan 2001 19:32:17 GMT View Forum Message <> Reply to Message

In article <3A70F0A5.575F123@pacific.met.fsu.edu>, Kyong Hwan Seo <khseo@pacific.met.fsu.edu> wrote: > msienkiewicz@my-deja.com wrote: > >> >> The basic GrADS file format is very simple. The data are stored as >> a sequence of unformatted floating point arrays. If your '.ctl' file does >> not have any special options specified (i.e. 'options sequential', >> 'options byteswapped', 'options bigendian' or the like) and you are >> planning to read it on a computer that has the same 'endianness' >> as the computer that generated it - well you can just use the ASSOC >> command and access those arrays directly from the disk. To advise >> further, we'd need to have a look at your .ctl file. >> > >> >> Meta >> Thanks, Meta > > I believe the ctl file is pretty much usual one. Could you show me one example of using ASSOC command(function) for my case. > > Thanks again, > Seo (Note that the z dimensions for variables are different (16 or 10).) Below is the ctl file: DSET csf_rNCEP_flux.data > undef -9999. TITLE CSEOFs of NCEP reanalysis XDEF 47 LINEAR 45.0 5.0 YDEF 47 LINEAR -57.5 2.5 ZDEF 16 LEVELS 925 850 700 600 500 400 300 250 200 150 100 70 50 30 20 > 10

```
> TDEF 96 LINEAR Jan1958 1mo
> vars 33
> xubup 16 35,100,0 ** x1
> xupup 16 35,100,0 ** x2
> xvbup 16 35,100,0 ** x3
> xvpub 16 35,100,0 ** x4
> xvpup 16 35,100,0 ** x5
> xwbup 10 35,100,0 ** x6
> xwpub 10 35,100,0 ** x7
> xwpup 10 35,100,0 ** x8
> xtbup 16 35,100,0 ** x9
> xtpub 16 35,100,0 ** x10
> xtpup 16 35,100,0 ** x11
> yubvp 16 35,100,0 ** y1
> yupvb 16 35,100,0 ** y2
> yupvp 16 35,100,0 ** y3
> yvbvp 16 35,100,0 ** y4
> yvpvp 16 35,100,0 ** y5
> ywbvp 10 35,100,0 ** y6
> ywpvb 10 35,100,0 ** y7
> ywpvp 10 35,100,0 ** y8
> ytbvp 16 35,100,0 ** y9
> ytpvb 16 35,100,0 ** y10
> ytpvp 16 35,100,0 ** y11
> zubwp 10 35,100,0 ** z1
> zupwb 10 35,100,0 ** z2
> zupwp 10 35,100,0 ** z3
> zvbwp 10 35,100,0 ** z4
> zvpwb 10 35,100,0 ** z5
> zvpwp 10 35,100,0 ** z6
> zwbwp 10 35,100,0 ** z7
> zwpwp 10 35,100,0 ** z8
> ztbwp 10 35,100,0 ** z9
> ztpwb 10 35,100,0 ** z10
> ztpwp 10 35,100,0 ** z11
> ENDVARS
>
> Kyong Hwan Seo
> Florida State University
                              Home: (850) 216-1985
> Dept. of Meteorology
                              Office:(850) 644-2274
> Email: khseo@pacific.met.tamu.edu Fax :(850) 644-9642
>
I'm assuming still that this is a regular GrADS file with unformatted
binary arrays. (I'm not familiar with the "35,100,0" notation in
```

the third column... so I could be missing something here.)

The control file says that you have a number of arrays dimensioned 47 x 47 saved in the file. In the GrADS format all the vertical levels for a single variable at a given time are stored consecutively. The first sixteen arrays should be the 16 levels of your variable 'xubup', the next 16 are 'xupup', etc.

What I would try then is something like this:

```
; Open the file as unit 1
open,1,'csf_rNCEP_flux.data'
 Make an associated variable
arr = assoc(1,fltarr(47,47))
 Draw a contour plot of the first variable at the first level
contour, arr(0)
 Try reading in the 47x47x10 array 'xwpub'
skip = 5*16+10
xwpub = fltarr(47,47,10)
for j=0,9 do xwpub(*,*,j) = arr(skip+j)
; try reading the 47x47x10 array 'xwpub' at time 5
 "skipt" is the number of grids at a single time period to skip over
skipt = 16*16 + 17*10
for j = 0.9 do xwpub(*,*,j) = arr(5*skipt+skip+j)
... or something like that anyway. It's what I would try first,
anyway. Hope this helps.
Meta
```

Sent via Deja.com http://www.deja.com/