Subject: speed comparison of IDL, numPv, Matlab Posted by Benyang Tang on Mon, 05 Feb 2001 18:18:04 GMT View Forum Message <> Reply to Message

Out of curiosity, I did a quick benchmark test of IDL, NumPy and Matlab on my desktop machine. I know benchmarking is a complicated issue; don't take my naive test too serious.

Conditions of the test:

- * Machine: a dual Intel Xeon 550 MHz box with 1GB ram, running RedHat Linux 6.2. The machine was not doing any serious service, so the test code should have had close to 100% of the resources.
- * IDL, version 5.3
- * Python version 1.5.2; NumPy release 15.3-1
- * Matlab version 5.3
- * For each code, I ran it several times so the timing became somewhat stable. I just took the last reading; for the size of 600X600, timing fluctuation of less than 2% was observed.
- * All tests were done in a period of 20 minutes; within this period the following data were collected. About 2 hours later, I redid the tests and obtained similar results.

Timing (in seconds) of matrix multiplication of 2 m-by-m matrixes

100 200 300 400 500 600 m

single precision

IDL 0.02 0.12 0.54 1.83 4.06 6.90 NumPy 0.01 0.12 0.46 1.37 3.05 5.49

Matlab (1)

double precision

IDL 0.04 0.41 1.89 5.14 10.72 18.61 NumPy 0.02 0.16 0.97 2.50 5.05 8.75 Matlab 0.01 0.15 0.94 2.50 4.90 8.69

100 200 300 400 500 600 m

(1) Matlab does not do single-precision calculation. _____ What the tests tell: _____ 1) NumPy is about as fast as Matlab: 2) NumPy is about 25% faster (in single precision), or more than 100% faster (in double precision) than IDL. Here are the codes (for the double precision test): _____ IDL: === for m = 100,600,100 do begin a = double(randomn(0,m,m))b = double(randomn(0,m,m))time0 = systime(1)c = a##bdtime = systime(1)-time0print, string(m,m,dtime, format='("multiplication of ",i3, "X", i3, " matrixes takes ", f5.2)') endfor NumPy: ===== from Numeric import * from RandomArray import * import time for m in [100,200,300,400,500,600]: a = uniform(-1,1,(m,m,))b= uniform(-1,1,(m,m,)) a=a.astype(Float64) b=b.astype(Float64) time0 = time.time()c = matrixmultiply(a,b)dtime = time.time() - time0 print 'multiplication of %dX%d matrixes takes %5.2f' %(m,m,dtime) Matlab: ===== for $m = [100 \ 200 \ 300 \ 400 \ 500 \ 600];$

```
a = randn(m);
b = randn(m);

time0 = clock;
c = a*b;
dtime = etime(clock,time0);

fprintf('multiplication of %dX%d matrixes takes %5.2f\n', m,m,dtime) end
---
<> Benyang Tang
<> 300-323, JPL
<> 4800 Oak Grove Drive
<> Pasadena, CA 91109, USA
```