Subject: Re: How to do polar plots with logarithmic axis in radial coordinate?
Posted by Charlie Zender on Thu, 08 Feb 2001 17:34:10 GMT

View Forum Message <> Reply to Message

Thanks for the suggestion, | might steal your idea of using
arc hyperbolic sin instead of log....

Mirko Vukovic wrote:

> In article <3A8159F0.6BCEO06BC@ncep.noaa.gov>,

> Paul van Delst <pvandelst@ncep.noaa.gov> wrote:

>

>> Charlie Zender wrote:

>>

>>> Craig Markwardt wrote:

>>>

>>>

>>>> Could you simply take the ALOG10() logarithm of the data before
>>>> plotting it? Easier to re-label the axis than re-invent the

>>>

> world...

>

>>> This would cause the radial coordinate to be negative-valued which
>>> would have unpleasant results. It's possible someone could get
>>> this method to work but | tried without success.

>>

For cases of positive numbers with a huge range, | often use the arc
hyperbolic sine function. Itis approximately linear for arguments<1,
and logarithmic for large arguments>1. | include it way at the end of
the post (last two routines). | use it farily often, but never
bothered to write and accompanying tick marking routine.

V VVVYVYVYVYV

>> Hope some of this is helpful, although | have to admit, the fact that
z IDL doesn't have a

; stock polar plotting routine that produces a circular graph with the
z radial and concentric

z> circle tickmark axes is a bit ridiculous. Farting about with /POLAR
z and AXIS and whatnot

z> is sort of like using OG to plot, x, y - and in the end you still end

>

Page 1 of 7 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1742
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=13072&goto=23717#msg_23717
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=23717
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>

up with

>> Cartesian-like axes.

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYV

agreed. In some of my applications, | use MAP for polar plotting.

I'll excerpt parts of the code, but you will need to modify it for your
applications. The code is part of an object, so some variables are
stored as fields of SELF. But that is all they are, variables. If you
provide them, they do not have to be parts of an object.

To give you some ideas as to what is involved, the following set-up the
plot:
; convert rmin and rmax (stored as vector in Radial Frame Limits) to
latitudes
LatRange=self->r2Lat(RadialFrameLimits)
; convert min and max angle (can be 0 to 360) to longitude
LonRange=self.FrameLimits[[1,3]]*!radeg
; store this as part of the object in which the whole things is done
self.DataLatLonRanges=[LatRange[0],LonRange[0],LatRange[1],L onRange
[11]
; rotate map so that 0 angle points to the right
Rotation=-90;+self.Orient*!radeg
;; the map is plotted without the default border
; put up the polar grid. We can plot data over that, discussed below.
map_set,90,0,Rotation,/Azimuthal,/iso,/noborder, $
limit=self.DataLatLonRanges,NoErase=NoErase, $
_extra=rPropertiesKeywordList

Now this requires two routines for conversion from data to latitudes
and back:

function Polar_PlotFrame::R2Lat,R
;@private

:function that converts radius to latitude. This is used to translate
:data into units that MAP understands.

Rmax=self.FrameLimits[2]
LatRange=self.LatRange

RelR=R/Rmax
Lat=RelR*(LatRange[1]-LatRange[0])+LatRange|[0]

return,Lat
end

Page 2 of 7 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

function Polar_PlotFrame::Lat2R,Lat
;@private
: function that converts from latitutde to radius

Rmax=self.FrameLimits[1]
LatRange=self.LatRange

RelR=(Lat-LatRange[0])/(LatRange[1]-LatRange[0])
R=RelR*Rmax

return,R
end

For these to work, | need this somewhere at the start of the program.
Thus the map will have the latitude range from 90 (radius 0) to 0.
(max radius, to be determined later)

self.LatRange = [90.,0.]

Finally, to plot the data, | do

; convert coords from data to latitude
self.oPlotFrame-> AdjustCoords,*self.pIndependentVariable, $
*self.pDependentVariable,AngleCoord,RadialCoord

; contour will work too!
plots,AngleCoord,RadialCoord, $
_extra=rPlotPropertiesKeywordList

And, finally, this needs the services of AdjustCoords:

pro Polar_PlotFrame::AdjustCoords,Phase,Mag,Lon,Lat
; converts coordinates from angle and radius to longitude and
; latitude.

;; convert negative magnitude to positive, and correct angle
iNegMag = where(Mag LT 0,cNegMag)
CorrPhase = Phase
CorrMag = Mag
IF cNegMag NE 0 THEN BEGIN
CorrPhase[iNegMag] = CorrPhase[iNegMag]+!pi
CorrMag[iNegMag] = -CorrMag[iNegMag]
ENDIF
CorrPhase = CorrPhase MOD !twopi

;; radius to latitude
Lat = self->r2lat(CorrMag)
Lon = CorrPhase*!radeg

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVYVYVYVYVYV

Page 3 of 7 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

return
END

Now for the routines for arc sinh.

Here is the asinh, that can handle scalars and vectors

iy

; return the inverse hyperbolic sine of the argument. The calculation
is

; performed in double precision because of the addition of 1 under the
; square root. It might be better to test for size and return the

; approximate value of the sqarre root.
; Written by Mirko Vukovic, around 1990
FUNCTION ASINH,ARG

;create the result array

type=size(arg)

type_res = type

dim = type(0)

type_res(dim+2) = 32

res = m$replicate(type_res)

fill it in with results

index1 = where (abs(arg) It 1.d3,count)
if count ne 0 then $

res(indexl1) = alog(arg(index1)+sqgrt(arg(index1)"2+1.d00))
index2 = where(arg le -1.d3,count)

if count ne 0 then $

res(index?2) = -alog(-2.*arg(index2))
index3 = where(arg ge 1.d3,count)

if count ne 0 then $

res(index3) = alog(2.*arg(index3))

; bring result to original type of the argument
if type(dim+2) ne 32 then res=float(res)
return,res

end

It requires mv_replicate, similar to IDL's replicate, but can handle
scalars (there is probably a better way)

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVYVYVYVYVYV

Page 4 of 7 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVYVYVYVYVYV

;+
: NAME:
: MV_REPLICATE

; PURPOSE:

; CATEGORY:

; Variable massaging
; CALLING SEQUENCE:

; result=MV_REPLICATE(INFO,type=type)

; INPUTS:
; INFO - a vector, of SIZE-like properties

: OPTIONAL INPUT PARAMETERS:
: None

; KEYWORD PARAMETERS:

; TYPE -- (optional) integer assigns the type of the variable.
If not

; present, the type present in INFO is assigned to the varible.
; The value of type should be

; 1: binary

; 2. integer

; 3: long integer

; 4 floating

; 5. double precision

; 6: complex

; OUTPUTS:

; RESULT - a variable specified according to INFO

; OPTIONAL OUTPUT PARAMETERS:

; None

: COMMON BLOCKS:
: None

: SIDE EFFECTS:
: If INFO does not have the total number of elements in the
) variable, that is added to it.

: RESTRICTIONS:
X None

Page 5 of 7 ---- Generated from conp. | ang.idl - pvwave archive

: To emulate the REPLICATE function of the old version of IDL


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; PROCEDURE:

; Straightforward. Checking is done to see if the total number

of

; elements in the variable is present in INFO. If not, it is

; calculated and added to it.

; MODIFICATION HISTORY:

; Written and performed by Mirko Vukovic, sometimes around 1990

function mv_replicate,info,type=type

nod = info(0)
infod = n_elements(info)

; make the INFO array complete

if infod ne nod+3 then begin ; total no. of elemets is
missing

t=1

for i=1,nod do t=t*info(i)

info=[info,t]

endif

if info(0) ne 0 then begin ; this is for an array
if keyword_set(type) then res=make_array(size=info,type=type) $
else res = make_array(size=info)

endif else begin

if keyword_set(type) then begin

case type of ; and this for a scalar, info(1) has variable type
info

0: begin

print, 'MV_REPLICATE: cannot make variable of undefined
type.'

stop

end
: res=0b
: res=0
: res=long(0)
: res=0.
: res=0.d00
: res=complex(0.,0.)

else: begin

print, 'MV_REPLICATE: cannot make structure or string
variable.'

stop

end

endcase

endif else begin

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVYVYVYVYVYV
OO WNPRE

Page 6 of 7 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

case info(1) of ; and this for a scalar, info(1) has variable
type info
0: begin
print, 'MV_REPLICATE: cannot make variable of undefined
type.'
stop
end
: res=0b
: res=0
: res=long(0)
: res=0.
: res=0.d00
: res=complex(0.,0.)
else: begin
print, 'MV_REPLICATE: cannot make structure or string
variable.’
stop
end
endcase
endelse
endelse
return,res
end

OO WNPE

Sent via Deja.com
http://www.deja.com/

VVVVVVVVVVVVVVVVVVVVVVVYVYVYVYV

Charlie Zender zender@uci.edu (949) 824-2987/FAX-3256, Department of
Earth System Science, University of California, Irvine CA 92697-3100

Page 7 of 7 ---- Cenerated from conp. |l ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

