Subject: Re: Bug? yea or nay.
Posted by Dave Greenwood on Fri, 16 Feb 2001 16:25:16 GMT

View Forum Message <> Reply to Message

William Daffer <whdaffer@earthlink.net> wrote:

by the way, I'm 'vapuser'

Paul van Delst <pvandelst@ncep.noaa.gov> writes:

V VVVYVYV

>> Vapuser wrote:

>>>

>>> | greatly simplified the structure in question to elucidate the point.
>>>

>>> |DL> print,!version

>>> { mipseb IRIX unix 5.3 Nov 11 1999}

>>>

>>> |DL>r={a:0.d, c:0L} & print,n_tags(r,/length),totsize(r)

>>> 16 12

>>>

>>

>> <snip>

>>

>>> What say you? Bug or not?

>>

>> From the IDL online manual (I know you already know this, Vapuser. It's here for
>> completeness):

>>

>> NTAGS

>> KEYWORDS
>> LENGTH
>>

>> Set this keyword to return the length of the structure, in bytes.

>>

>> Note - The length of a structure is machine dependent. The length
>> of a given structure will vary depending upon the host machine.

>> |DL pads and aligns structures in a manner consistent with the host
>> machine's C compiler.

>

> | understand this, although, as | pointed out, | thought that if you

> always went from largest to smallest you wouldn't get into trouble

> since each indivudual quantity couldn't help but be on a border that
> was a multiple of its type.

Data alignment is a performance issue, of course, but it's not quite as
simple as just having each quantity aligned on its "natural” boundary.

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=13103&goto=23725#msg_23725
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=23725
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Hardware, especially modern RISC hardware, tends to be optimized for
certain sized operations, for example 32 bits. That is, memory ops will
be done as 32-bit load/stores, arithmetic ops as 32-bit adds/subtracts,
etc. If you want to add 1 to a 16-bit number, that machine is going to
actually read 32 bits out of memory, save the "other" 16 bits somewhere,
possibly shift the desired 16 bits into the low order half of the

register, possibly mask out the other 16 bits, add 1, possibly shift the
result into the other half of the register, replace the "other" 16 bits

and store the 32-bit result back in memory. On such hardware it's much
more efficient to ensure that frequently used 16-bit quantities are stored
as 32-bit values and just "waste" the other 16 bits. Many, if not most,
modern C compilers do that for you (or *to* you, depending on your point
of view).

Another way of saying the above is that it's more efficient to align data
on the *hardware's* natural boundary than on the *data's* natural
boundary. Compilers know about that and align data accordingly.

Dave Greenwood Email: Greenwoodde@ORNL.GOV
Oak Ridge National Lab %STD-W-DISCLAIMER, | only speak for myself

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

