
Subject: I have the craziest idea...
Posted by T Bowers on Wed, 14 Feb 2001 19:32:07 GMT
View Forum Message <> Reply to Message

I've written a widget program that I've tried to design as a general data
import interface. What I mean by general is that it's a wrapper widget to
import various types of data and present it back to the user in some kind of
standardized format for easy use. E.g., I have some 3D gridded data in ASCII
text files of one format, 2D scattered data in ASCII text files of another
format, etc. etc. What I did was write the widget as a function call so all
I have to do is call it and I always have access to ALL data files that I
know how to read. And, more importantly, the data is passed back to me in a
format that's consistent and easy to process and visualize in IDL.

So, what do all of you think about the crazy idea of me putting this up on a
server and all of us passing this around, adding code where we can so that
we all have a centralized function that'll read many data formats? Seems to
me that we all have our specialty, and when one of us wants to read in a new
type we just come to this newsgroup for the answer anyway. I call it the
ngDataImporter. I usually put my initials in front of the name of each
function so I don't ever step on other functions. Since this would be a
group effort by us all, I just fronted it with ng for newsgroup, the IDL
newsgroup users.

From the intro comments:

;////////////////////////////////
;+
; NAME:
; ngDataImporter
;
; PURPOSE:
; This is a general purpose data import widget. It is meant to be
distributed
; between users and appropriate data reading code inserted. The idea is to
present
; to the calling routine a PREDICTABLE and INTUITIVE representation of the
data
; for easy processing AND visualization. For example, 3 dimensional
scattered data
; points should ALWAYS be returned as an array [4,n] of x,y,z,f(x,y,z)
vectors because
; 1) For processing, it's easy to interpolate to a 3D grid since most
interpolation
; routines (including IDL's grid3()) expect 3D scattered data in [4,n]
format,
; and 2) for visualization, you could vis the scatter points as an
IDLgrPolyLine

Page 1 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2596
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=13111&goto=23746#msg_23746
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=23746
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; object. IDLgrPolyLine expects 3D data in [3,n] for x,y,z coords, and you
could
; pass the data colored by value via the VERT_COLORS keyword. This can be
useful
; especially if you returned the poly line descriptor in the POLYLINES
keyword (see
; POLYLINES keyword for IDLgrPolyLine object and the d_tankleak IDL demo).
The idea
; here is to keep in mind the routines for both processing and
visualization that
; can work on the return data.
; To this end, we define certain return formats for each type of data as
follows:
; 2D Scalar Scatter - [3,n] column vectors of x,y,f(x,y)
; 3D Scalar Scatter - [4,n] column vectors of x,y,z,f(x,y,z)
; 2D Scalar Gridded - [m,n] of f(x,y) scalar data values
; 3D Scalar Gridded - [m,n,o] of f(x,y,z) scalar data values
; 2D Vector Gridded - [2,u,v] where u,v are 2D arrays of u and v
magnitudes
; 3D Vector Gridded - [3,u,v,w] where u,v,w are 3D arrays of u, v and w
magnitudes
; I haven't worked with vector data, suggested changes are welcome.
;
; To add a new data type for import:
; 1 - Add your function/procedure call in the case statement of the
appropriate import
; data function (e.g. in importGriddedData() function).
; 2 - Be sure to at least return the expected data, the dataClass, and
fileName.
; 3 - Place your import code in the 'support' subdirectory.
; 4 - Please try to include a small test/example data file in the 'eg_data'
subdirectory.
; 5 - Document your update in the MODIFICATION HISTORY section below. This
is VERY
; IMPORTANT! Be sure to include the date for synchronization!!
; 6 - If you added what you believe to be necessary data return items, you
need to
; update the code for the pointer(ptr) and return(sReturnData) structures
in this
; module. See code below.
;
; All feedback and additions are welcome. If you feel that some wholesale
change
; is in order to make this a better routine, please let me know.
;
; CATEGORY:
; Utility, Data Processing.
;

Page 2 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; CALLING SEQUENCE:
; sImported = ngDataImporter()
;
; INPUTS:
; None.
;
; KEYWORDS:
; VARDATA: Dependent data, e.g. temperature. - OUTPUT
; XDATA: Independent data in X, e.g. longitude. - OUTPUT
; YDATA: Independent data in Y, e.g. latitude. - OUTPUT
; ZDATA: Independent data in Z, e.g. depth. - OUTPUT
; TDATA: Independent data in T (time), e.g. hour. - OUTPUT
; ANCILLARYDATA: Ancillary data, anything else you want to pass back. -
OUTPUT
; E.g. I have some oceanographic data of 'profiles' (vs. depth) of
salinity.
; In the data files, there's a header associated with each profile that
also
; lists that location's bathymetry. I can return this as ancillary data.
; DATANAME: Set this to the data set's name. - OUTPUT
; Many files contain the data set's name within the header.
; FILENAME: Set this to the name(s) of the data file(s) read. - OUTPUT
; The calling routine then may use this to determine exactly what was
read.
; DATACLASS: A data classification specifier so we can distinguish general
data types. - OUTPUT
; Use this in conjunction w/ the DATATYPE kewyord and/or file extensions
; (e.g. 'jpg') which can be extracted from FILENAME keyword to help you
decide
; how to handle the returned data. This classification is to let the user
know
; what form the data is in regardless of source.
; Supported data classes are:
; SCAL_GRID_NSMT : SCALar_GRIDded_NSpatialMTemporal dimensions
; (N=1-n spatial dims, M=0-1 temporal dims)
; SCAL_SCAT_NSMT : SCALar_SCATtered_NSpatialMTemporal dimensions
; (N=1-n spatial dims, M=0-1 temporal dims)
; VECT_GRID_NSMT : VECTor_GRIDded_NSpatialMTemporal dimensions
; (N=1-n spatial dims, M=0-1 temporal dims)
; VEVT_SCAT_NSMT : VECTor_SCATtered_NSpatialMTemporal dimensions
; (N=1-n spatial dims, M=0-1 temporal dims)
; SCAL_IMAG_NSMT : SCALar_Image_NSpatialMTemporal dimensions
; (N=1-n spatial dims, M=0-1 temporal dims)
; ANEW_TYPE_NSMT : If you add a new type, document it here
; DATATYPE: You can use this to be more specific about the data type that
was read in. - OUTPUT
; There are no restrictions on it's usage. E.g., if you contribute a
routine

Page 3 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; that reads in Level-3 processed SeaWiFs satellite imagery which comes in
an
; HDF file, you could set this as HDF_SEAWIFS_LEVEL3, or something
similar.
; POLYLINES: Poly line descriptor for IDLgrPolyLine object. - OUTPUT
; May need this to visualize imported scatter point data as individual
lines
; in an IDLgrPolyLine object. See POLYLINES keyword for IDLgrPolyLine
object
; and run the d_tankleak.pro demo (in IDL's demo subdirectory) to see the
usefulness
; of individual polylines. It's necessary to include on import because it
may be
; difficult for the user to distinguish individual data 'sets' when
scattered data
; returned as [3,n] (for 2D) or [4,n] (for 3D) v=column vectors.
; CANCEL: This will be 1 if the user canceled this widget without selecting
data to import. - OUTPUT
; ERROR: This will be 1 if an error occurred that caused IDL to call the
catch block. - OUTPUT
; GROUPLEADER: Specifies this widget's group leader. - INPUT
;
; OUTPUTS:
; Returns an anonymous structure whose fields contain all relavent data
; and information. This information is also returned via optional keywords.
;
; SIDE EFFECTS:
; Displays an error dialog in catch block.
;
; RESTRICTIONS:
; Coded in IDL v5.31.
;
; EXTERNAL MODULES:
; If you're import code needs helper routines, put those in the 'support'
directory
; and include the name of the routine(s) here. In general, you shouldn't
have to
; use external (non-IDL) function/procedure calls in this routine unless
you wish
; to change the look and feel of the interface. If you add code to one of
the above
; import routines, add the documentation for the external module call
there.
;
;
; EXAMPLE:
; oGraphicsModel = obj_new('IDLgrModel')
; sImported = ngDataImporter()

Page 4 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; if ((sImported.cancel) or (sImported.error)) then begin
; r = dialog_message("No data imported, returning NaN", /information)
; return, !values.f_NaN
; endif
; ;//Add new graphic object based on what type of data was imported
; case (sImported.dataClass) of
; "SCAL_GRID_3S0T": begin
; ;//Volume
; oGraphic = obj_new('IDLgrVolume', DATA0=bytscl(sImported.data))
; end
; "SCAL_GRID_2S0T": begin
; ;//Surface
; oGraphic = obj_new('IDLgrSurface', $
; DATAX=sImported.xData, DATAY=sImported.yData, DATAZ=sImported.data)
; end
; "SCAL_SCAT_3S0T": begin
; ;//Don't interpolate, view as a 3Dpolyline object (or objects if
polyline
; ; descriptor present) colored by data value
; if(sImported.polylines ne 0b) then $
; oGraphic = obj_new('IDLgrPolyline', $
; X_COORDS=sImported.xData, Y_COORDS=sImported.yData,
Z_COORDS=sImported.zData, $
; VERT_COLORS=(bytscl(sImported.data, /NaN)),
POLYLINES=sImported.polylines)
; else $
; oGraphic = obj_new('IDLgrPolyline', $
; X_COORDS=sImported.xData, Y_COORDS=sImported.yData,
Z_COORDS=sImported.zData, $
; VERT_COLORS=(bytscl(sImported.data, /NaN)))
; end
; "SCAL_SCAT_2S0T": begin
; ;//Interpolate to a surface
; triangulate, reform(sImported.xData), reform(sImported.yData), angles,
b
; limits = [min(sImported.xData,/NaN), min(sImported.yData,/NaN), $
; max(sImported.xData,/NaN), max(sImported.yData,/NaN)]
; zGrid = trigrid(sImported.xData, sImported.yData, sImported.zData, $
; angles, [0,0], limits, $
; NX=100, NY=100,$
; XGRID=xGrid, YGRID=yGrid, MISSING=!Values.F_NaN)
; oGraphic = obj_new('IDLgrSurface', DATAX=xGrid, DATAY=yGrid,
DATAZ=zGrid)
; end
; "SCAL_IMAG_2S0T": begin
; ;//Map to a polygon for display
; imgType = strlowcase(strmid(sImported.fileName[0], $
; (rstrpos(sImported.fileName[0],".") + 1),

Page 5 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

strlen(sImported.fileName[0])))
; if(imgType eq "jpg") then $
; oImage = obj_new('IDLgrImage', DATA=sImported.data, /INTERPOLATE) $
; else if(imgType eq "gif") then $
; oImage = obj_new('IDLgrImage', DATA=sImported.data, /INTERPOLATE)
; oGraphic = obj_new('IDLgrPolygon', TEXTURE_MAP=oImage,
TEXTURE_INTERP=1)
; end
; endcase
; oGraphicsModel->add, oGraphic
;
; ;//Let's say the data imported was a US ARMY GMS 3D grid file
; IDL> help, sImported, /STRUCT
; ** Structure <1354308>, 13 tags, length=2022472, refs=1:
; DATA DOUBLE Array[101, 61, 41]
; XDATA DOUBLE Array[101]
; YDATA DOUBLE Array[61]
; ZDATA DOUBLE Array[41]
; TDATA BYTE 0
; ANCILLARYDATA BYTE 0
; DATANAME STRING 'c532(1/m)'
; FILENAME STRING Array[1]
; DATACLASS STRING 'SCAL_GRID_3S0T'
; DATATYPE STRING 'USA_GMS3DG'
; POLYLINES BYTE 0
; ERROR BYTE 0
; CANCEL BYTE 0
;
; MODIFICATION HISTORY:
; Written by: Todd Bowers, 13Feb2001. (tbowers@nrlssc.navy.mil)
;
; Modified:
; Added US Army Corps of Eng. Groundwater Modeling System 3D Grid
format(.3dg) - 13Feb2001 Todd Bowers
; Added US Army Corps of Eng. Groundwater Modeling System 2D Grid
format(.3dg) - 13Feb2001 Todd Bowers
; Added US Navy Modaps Automated Processing System(MAPS) ocean profile
data format - 14Feb2001 Todd Bowers
;
; This software is provided as is without any express or implied warranties.
;-
;////////////////////////////

Feedback would be appreciated.
Todd Bowers

Page 6 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

