Subject: Re: REDUCE
Posted by Richard Younger on Sun, 01 Apr 2001 18:55:31 GMT

View Forum Message <> Reply to Message

John-David Smith wrote:

>

> Kenneth Mankoff wrote:

>>

>>> The question, to all you C-programmers: is there a better way?

>> [snip]

>>> _..the code logic to compute the maximum will be the same, both

>>> symbolically for all types for many types, in the compiled code itself.

>>

>> Hi JD,

>>

>> hmmm... not 100% sure, but wouldn't c++ templates solve this problem?
>>

>> And for the cases where it is "symbolically” the same but not "compiled
>> the same”, I'm not sure what this means, but I'm guessing you would handle
>> these cases with overloading your operators.

>> Of course, C isn't C++, so this might not help.
>> | can provide code examples and more info if you wish.

Thanks for the suggestion. | had thought of that option, but | don't know much

about templates, nor about linking C++ to IDL. | wonder whether the templates
are just similar to my super macro for creating a different version for each

type. Can you frame the maximum function | suggested in terms of a skeleton

template which would operate on all the data types?

My comment with respect to compiled and symbolic maybe wasn't clear. | really
just meant that you have this same code replicated over and over, with minor
changes in the types of the variables used, but otherwise logically and
symbolically intact. | can imagine the compiler emitting different code for,

e.g., multiplying two integers, vs. two floats, but | can also imagine other

types where the codes emitted are exactly the same. Obviously, you can't get
something for nothing, but if real repition exists within the compiled code, you
should be able to eliminate it somehow.

Thanks again,

VVVVVVVVYVVVVVVVYVYVYVYV

JD
Hi JD and Ken,

| agree with Ken that the most obvious and easiest C++ solution is
templates and operator overloading. | have a little experience DLMing

Page 1 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3711
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=13346&goto=24395#msg_24395
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=24395
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

with C++, and it works just fine. The calling conventions of C and C++
can be set exactly the same, so the limitations are exactly the same.

What is the distinction between the different cases? Are you primarily
worried with arithmetic, indirection, or member changes. e.qg:

(floata * 2) vs (inta* 2)or
(float*)a vs (int*)a or
2*value.f vs 2*value.i

The overloading and template solutions work well on the first two
problems, and not well at all on the last category, because AFAIK
there's no good, compact way to make run-time distinctions with
members. It's because different explicit symbols are used, as opposed
to different implicit types. You end up using lots of switch - case
statements. | suppose you could put the switch into an operator to
extract the value of a data element, but then you end up switching every
time you access an array element, instead of once at the beginning. I'd
think it would be slower than your super-macro. Maybe someone else
knows a better solution.

And | know that IDL uses unions in its variable definitions, so |
suspect that you are running into the third problem.

As for using a nifty silver bullet C++ feature, the use of unions is

generally discouraged in C++ for the above reasons. | suppose you could

go heavy-duty C++ and start throwing around wrapper classes and Standard
Template Library iterators, but I'm just barely familiar with that stuff

(iterators anyway), and don't know enough to really know if that

solution is simple or fast or not. Besides, | don't think JD is that

interested in learning lots of C++ language semantics for limited

return.

On a side note, Your REDUCE package seems to be very similar to a
feature that | really would like RSI to implement; namely,
Einstein-summation or dummy-index notation. Something that would result
in operations like

epsilon = fltarr(3, 6, 9)
E_one = fltarr(9)
E_two = fltarr(6)

epsilon[%1, %2, %3]*E_one[%3]*E_two[%2]
would multiply the elements of epsilon by E_one on the corresponding

(3rd) index and sum over that index. Especially for those of us working
with lots of fields in tensor notation, it would save lots of for loops,

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

and I'm sure that a built-in facility would save time over the for loop.
Has anyone else found themselves yearning for such a feature?
Rich

Richard Younger

Assistant Technical Staff MIT Lincoln Laboratory
Electro-Optical Materials and Devices Mail Stop C-130
Email: younger@Il.mit.spmdecoy.edu 244 Wood St.
Phone: (781)981-4464 Lexington, MA 02144-9108

(My opinions on this forum are not endorsed, warrantied, etc. by my
employer.)

Page 3 of 3 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

