
Subject: REDUCE
Posted by John-David T. Smith on Fri, 30 Mar 2001 00:18:09 GMT
View Forum Message <> Reply to Message

IDL Monkeys:

If you've done any C+IDL programming, skip to the end for a (possibly
impossible) programming challenge: WARNING: not for the faint of heart.

The little n-dimensional histogram thought exercise revved my juices to
waste more time and finish a little project which had been languishing
for months: REDUCE. For those of you without idelible memories of all
things idl-pvwave, I was lamenting the lack of any good, multipurpose,
built-in threading tool, i.e. something for applying operations over a
given dimension of a multi-dimensional array, similar to the way "total"
allows you to specify a total'ing dimension. Craig has also supplied us
with cmapply, which, while useful, is forced to compromise speed.

The result is a C-program for building as a DLM and linking with IDL.
Currently, the options supported are:

Operations:
"MAX"
"MEAN"
"MEDIAN"
"MIN"
"MULTIPLY"
"TOTAL"

Options:
"DOUBLE" - work in double precision
"EVEN" - for median, same as keyword in IDL's median() function

That is, you can take the median over the third dimension of a 5D
hypercube, and so on.

REDUCE works in any native numeric type, preserving type if possible.
For certain operations, namely, TOTAL, MEAN, and MULTIPLY, it is always
performed in FLOAT (or DOUBLE if passed or natively present in the
input). This is to avoid overflow, and follows the example of IDL's
total(). I may add a keyword "NATIVE" to force working in the native
type, overflows be damned, which might be useful in some instances.

Things I like about REDUCE:

1. It doesn't screw with your type unless it has to. For instance,
IDL's median() converts everything but byte to float first. Why?
REDUCE respects your right to use ULON64's or what have you natively.

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3389
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=13361&goto=24410#msg_24410
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=24410
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

2. It's fast. Preliminary testing indicates its from 2-50 times as
fast as the same operation expressed in IDL (as you'd expect).
Especially true for multiplies, but everything sees a healthy speed-up.
It even takes medians faster than median().

The thing I don't like about REDUCE:

 It is horribly ugly.

The reason it is horribly ugly is all those damn types. If you followed
Ronn Kling's book, you'd know he recommends handling multiple types
like:

switch(type){
 case IDL_TYP_INT: myvar=(short *) foo; stuff1; stuff2; stuff3; break;
 case IDL_TYP_LONG: myvar=(int *) foo; stuff1; stuff2; stuff3; break;
 case IDL_TYP_FLOAT: myvar=(float *) foo; stuff1; stuff2; stuff3;
break;
 ...
 ...
}

That is, just replicate things over and over again for the various
types. REDUCE works natively in 9 types. Luckily, I didn't have to
copy everything over nine times as above, but in essence that's what I
did. I just used a host of clever C pre-processor directives to
indirect the type replication.

OK, no problem. But what happens is "stuff" is large. For example,
finding a median takes about 75 lines of code with all the
initialization etc. What's more you need a separate copy of the same
code not just for the 9 types, but also for the cases in which you're
possibly promoting to double, or float. A given piece of code can end
up being replicated 18 times, with slight differences like:

float *p=IDL_MakeTempArray(IDL_TYP_FLOAT,...);

vs.

short *p=IDL_MakeTempArray(IDL_TYP_INT,...);

vs.

int *p=IDL_MakeTempArray(IDL_TYP_LONG,...);

and so on, ad infinitum.

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

For a couple lines of code, this isn't too bad, but when you're forced
to shoehorn a 70 line function into a macro just to replicate it 9 or 18
times with some very subtle change, it gets ugly, and bloated. My
nested loops which do the magic of threading the calculations occur 81
times in the code, after pre-processing! Yuck.

If this is how IDL handles dealing with multiple types internally, well
that makes me very sad (and allows me to understand why their median
only deals with two types).

The question, to all you C-programmers: is there a better way?

In order to phrase the challenge more sensibly, consider a function that
will take the maximum of an array of data:

IDL_LONG maximum(data)

The catch is data will be of whatever numeric type the user likes (see
the list in external/export.h under the IDL directory for a list of
them).

First recognize that the code logic to compute the maximum will be the
same, both symbolically for all types (e.g. "if data[i]>max then
max=data[i]"), and for many types, in the compiled code itself. Can you
come up with a portable way to write and call maximum() which avoids any
of the repitition intrinsic in the straightword approach, that is, to
avoid compiling in the code like

"if data[i]>max..."

once for each type?

Thought I'd give it a shot. I'll release REDUCE to the masses once I
sort these issues out.

JD

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

