Subject: Re: Help setting up an array
Posted by John-David T. Smith on Thu, 29 Mar 2001 03:56:12 GMT

View Forum Message <> Reply to Message

Craig Markwardt wrote:

>

> Peter Thorne <peter.thorne@uea.ac.uk> writes:

>

>> Thanks to everyone who has replied. At nearly 11pm I'm not sure whether
>> jts exactly what I'm looking for, | shall investigate further tomorrow.

>> |t seems like as suggested | have been looking at it for too long so

>> have tried to explain it in far too much difficulty, sorry. So, I'll

>> give a hopefully better example:

>>

>> 3-D (to keep everyone happy, theoretically could be expected to be 2 to
>> 5 dimensional)

>>

>> Locations array (points within a 3-D ellipsoid)

>> X y z (coordinates)

>> (1.5,3.4,2.0) point0

>> (3.,-0.5,6.3) point 1

>> (1.3,2,.-4.5) point 2

>> (-0.1,1.7,0.1) point 3

>>

>>

>>

>>

>> (3.1,9.2,-1.4) point npoint

>>

>> npoint is of order (10,000)

>>

>> From this | wish to create a say 50x50x50 grid which covers all

>> plausible values (found by min and max in each column of the locations
>> array).

>>

>> Then | need to rebin each of these points into the 3-D grid-space, so
>> each grid-box has a value which is the number of these original points
>> which fall within that grid-box. Other considerations are peripheral,

>> the problem arises in this transformation from the locations array to a
>> finite difference grid in which the values can be rebinned and how they
>> are rebinned.

>>

>> This may have been covered already, but as my IDL license is at work and
>> not home | can't check :(

>>

>> Thanks again for all the pointers and comments

>

> Yeah, this is indeed a job for HISTOGRAM. What you need to do is

Page 1 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3389
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=13359&goto=24438#msg_24438
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=24438
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

check out how HIST_2D is implemented. This can generalize to many
dimensions. The one thing that HIST 2D does *not* do is to pass along
the REVERSE_INDICES array, but it is trivial to add this if you need

it (say, if you want to "invert" the histogram and find out which

points fall in a particular bin).

The end result will be something like this (for 3d, but not tested):

i = floor((x-xmin)/xstep)
] = floor((y-ymin)/ystep)
k = floor((z-zmin)/zstep)

ijk = i + Nx*(j + ny*K)

h = histogram(ijk)
h = reform(h, nx, ny, nz, /overwrite)

If you are clever you can generalize this to multi-d. Doing
multi-dimensional histograms, with weighting, is something I've been
intending to do in a program called CMHISTOGRAM. Alas it is only half
written.

VVVVVVVVVVVVVVYVVYVYVYVYVYV

OK, I took the bait, and wasted some time. It's amazing how productive
you can be when you have other things to do.

Attached you'll find HIST_ND, for n-dimensional histograms. It's well
documented, and pretty straightforward. Try it out with some random
data:

IDL> c=randomu(sd,3,100)

IDL> plot_3dbox,x[0,*],x[1,*],x[2,*],PSYM=4,CHARSIZE=1.5,%
ZRANGE=[0,1],ZSTYLE=1

IDL> print,hist_nd(c,NBINS=[3,3,3],MIN=0,MAX=1)

Enjoy,

JD
T

: NAME:

; HIST_ND

; PURPOSE:
; Perform an N-dimensional histogram, also known as the joint
; density function of N variables, ala HIST_2D.

; CALLING SEQUENCE:
; hist=HIST_ND(V,BINSIZE,MIN=MIN,MAX=MAX,NBINS=NBINS,REVERSE_| NDICES=ri)

Page 2 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; INPUTS:

; V: A NxP array representing P data points in N dimensions.

; BINSIZE: The size of the bin to use. Either a P point vector

; specifying a separate size for each dimension, or a scalar,
: which will be used for all dimensions. If BINSIZE is not

; passed, NBINS must be.

; OPTIONAL INPUTS:

; MIN: The minimum value for the histogram. Either a P point

; vector specifying a separate minimum for each dimension, or a
; scalar, which will be used for all dimensions. If omitted,

; the natural minimum within the dataset will be used.

; MAX: The maximum value for the histogram. Either a P point

; vector specifying a separate maximmum for each dimension, or a
; scalar, which will be used for all dimensions. If omitted, the

; natural maximum within the dataset will be used.

; NBINS: Rather than specifying the binsize, you can pass NBINS,
; the number of bins in each dimension, which can be a P point

: vector, or a scalar. If BINSIZE it also passed, NBINS will be

: ignored, otherwise BINSIZE will then be calculated as

; binsize=(max-min)/nbins. Note that *unlike* RSI's version of

; histogram as of IDL 5.4, this keyword actually works as

; advertised, giving you NBINS bins over the range min to max.

; KEYWORD PARAMETERS:

; MIN,MAX: See above

; REVERSE_INDICES: Set to a named variable to receive the
; reverse indices, for mapping which points occurred in a given
; bin.

; OUTPUTS:

; The N-Dimensional histogram, of size N1xN2xN3x...xND where the
; Ni's are the number of bins implied by the data, and input

: min, max and binsize.

; OPTIONAL OUTPUTS:

: The reverse indices

Page 3 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; EXAMPLE:

v=randomu(sd,2,100)

- h=hist_2d(v,.25,MIN=0,MAX=1,REVERSE_INDICES=ri)
MODIFICATION HISTORY:

Wed Mar 28 19:41:10 2001, JD Smith <jdsmith@astro.cornell.edu>
Written, based on HIST_2D, and suggestions of CM.

function hist_nd,V,bs,MIN=mn,MAX=mx,NBINS=nb,REVERSE_INDICES-=ri
s=size(V,/DIMENSIONS)
if n_elements(s) ne 2 then message,'Input must be N x P’

if n_elements(mx) eq 0 then begin
mx=make_array(s[0], TYPE=size(V,/TYPE))
need_mn=n_elements(mn) eq 0
if need_mn then mn=mx
for i=0,s[0]-1 do begin
mx[i]=max(V[i,*], MIN=tmn)
if need_mn then mn[i]=tmn
endfor
endif

if n_elements(mn) eq 1 and s[0] gt 1 then mn=replicate(mn,s[0])
if n_elements(mx) eq 1 and s[0] gt 1 then mx=replicate(mx,s[0])
if n_elements(bs) eq 1 and s[0] gt 1 then bs=replicate(bs,s[0])

if n_elements(bs) eq 0 and n_elements(nb) ne 0 then bs=float(mx-mn)/nb else $
message,'Must pass one of binsize or NBINS'
nbins=long((mx-mn)/bs)

tmx=nbins[s[0]-1]

h=(nbins[s[0]-1]-1)<long((V[s[0]-1,*]-mn[s[0]-1])/bs[s[0]-1]) >0L

for i=s[0]-2,0,-1 do begin
h=nbins[i]*h+((nbins[i]-1)<long((V[i,*]-mnli])/bs[i])>0L)
tmx=tmx*nbins]i]

endfor

ret=make_array(TYPE=3,DIMENSION=nbins,/NOZERO)

if arg_present(ri) then $
ret[0O]=histogram(h,min=0,max=tmx-1,REVERSE_INDICES=ri) $

else $

Page 4 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

ret[0]=histogram(h,min=0,max=tmx-1)
return,ret
end

File Attachnents

1) hist_nd.pro, downl oaded 154 tines

Page 5 of 5 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=getfile&id=207
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

