
Subject: Re: Object epiphany: A new way of building widget applications
Posted by John-David T. Smith on Thu, 05 Apr 2001 14:02:25 GMT
View Forum Message <> Reply to Message

OK, I feel I need to clarify just a bit more. I didn't mean to hit such
a sensitive nerve. I am not *at all* questioning the motives and
qualities of the software being released with the naming convention in
question. Not even sort of. I appreciate, just like everyone else, the
ability to pick through outstanding pieces of work coded by talented and
dedicated individuals like yourself. Heck, sometimes I even use
contributed routines as-is ;) So I'm sorry if my opinion cut too deep.

Maybe it was a poor choice of timing, but all I really wanted to do was
alert contributors of a potential hidden meaning their naming style
might convey to a certain (apparently small) portion of their intended
audience. I did not mean to appear critical.

As far as the question of inheriting and updating older code (like
FSC_FIELD), this is a trickier issue. One thing that is certain to
confuse users, however, is multiple *_FIELD routines out there. Which
do I use?

Sometimes this is unavoidable. But consider an example. Suppose in
some alternate universe I was good enough at lisp to redo the IDLWAVE
mode of emacs substantially to suit my own peculiar needs (not that
Carsten doesn't bend over backwards to do that now... but this is
hypothetical...). I have two options.

1. Fork the codebase, rename the mode JD-IDLWAVE, and begin
distributing a competing version.

2. Talk to Carsten about the features I'd like to see, and come to some
agreement about who should really be maintaining it, given the new
information.

Version 2 is much trickier, obviously. It takes cooperation, potential
conflict resolution, and perhaps compromise. If JD-IDLWAVE were for
internal consumption, it probably would not be worth it. But, if
JD-IDLWAVE were intended to benefit the larger community, the experience
of "real" programmers (unlike myself) has shown that a consistent,
continuously evolving work will last longer, receive more attention, and
ultimately benefit everyone more, despite the transition to a new
maintainer/coder. Fractionation confuses. Unification encourages.

Anyway, these are just very different approaches. And now, back to your
regularly scheduled program (and sorry for the interruption).

I close with a truer wisdom:

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3389
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=13394&goto=24540#msg_24540
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=24540
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Honest disagreement is often a good sign of progress.
--Mahatma Gandhi (1869 - 1948)

JD

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

