Subject: Re: changing contrast and brightness on the fly
Posted by John-David T. Smith on Wed, 20 Jun 2001 20:26:08 GMT

View Forum Message <> Reply to Message

"Liam E. Gumley" wrote:

>

> JD Smith wrote:

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

A standard feature of astronomical viewers. For a solution which uses
only colormap fiddling (vs. full image rescaling), see atv:

http://cfa-www.harvard.edu/~abarth/atv/atv.html

This brings up the age old question of how best to dynamically redisplay
images (brightnest/contrast/etc.). With only 255 colors, making the top
100 white to increase brightness is pretty wasteful, and cuts down on
the dynamic visual range... much better (and slower) is to rescale the
image range of interest into the full colormap.

Here's how Andrew (and cohorts) did it:

++++++++++++++H+H+H R
pro atv_stretchct, brightness, contrast, getmouse = getmouse

; routine to change color stretch for given values of

; brightness and contrast.

; Complete rewrite 2000-Sep-21 - Doug Finkbeiner

: This routine is now shorter and easier to understand.

common atv_state
common atv_color

; if GETMOUSE then assume mouse positoin passed; otherwise ignore
; inputs

if (keyword_set(getmouse)) then begin
state.brightness = brightness/float(state.draw_window_size[0])
state.contrast = contrast/float(state.draw_window_size[1])
endif

X = state.brightness*(state.ncolors-1)

y = state.contrast*(state.ncolors-1) > 2 ; Minor change by AJB
high = x+y & low = x-y

diff = (high-low) > 1

slope = float(state.ncolors-1)/diff ;Scale to range of O : nc-1
intercept = -slope*low

p = long(findgen(state.ncolors)*slope+intercept) ;subscripts to select
tvict, r_vector[p], g_vector[p], b_vector[p], 8

Page 1 of 3 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3389
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=13781&goto=25500#msg_25500
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=25500
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>> end

>> +++++++H+H+H

>

> |s it fair to say that this method will only give satisfactory results
> when IDL is running in 8-bit display mode?

Umm, not necessarily. ATV for instance just issues a redisplay if
you're using 24 bit color. The actual breakdown I've discovered (please
correct any errors) is:

Psuedo-Color: Shared colormap (usally 8bit), no redisplay necessary.
The hardware colormap is read-writeable.

Direct-Color: One large colormap for each of R/G/B, no redisplay
necessary. The hardware colormap is read-writeable.

True-Color: No real colormap, colors are expressed in absolute terms.
Redisplay necessary (which will usually be fairly much slower than

direct manipulation of the hardware color table). IDL will maintain a
software translation colormap for you, with decomposed=0. A linear ramp
of RGB colors is presumed, and you can't change this directly (the
hardware colormaps is read only).

Some machines (usually commercial unices) support multiple visuals at
once, a capability termed "overlays". In this case, you can say
device,PSUEDO=8, and be up and running, able to write the underlying
hardware colormap for fast color-changing. On the PC side, typically
you only have one visual class available at a time (and this includes
linux).

The pros and cons are:

1. TrueColor:

Pros: Millions of colors, and straightforward to get exactly the color

you want, since noone can muck with the underlying colormap (a linear

ramp in R,G, and B space)

Cons: Read-only colormap, requiring slow redraws and software-only color
translation for normal color table operation.

2. PsuedoColor:

Pros: Lightening fast color manipulation, since you're just loading a
table into the display hardware. No redisplay required.

Cons: Usually only 255 colors. Colormap flashing may result (even with

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

IDL widgets... yuck). This is not a problem for overlayed PsuedoColor
visuals (which get their own little 8-bit colorspace to play in).
Overlays have limited availability.

3. DirectColor:

Pros: Colormaps can be fiddled, separately for RGB. Redisplay probably
*not* required.

Cons: Not as fast at color operations as Psuedo-color. It's quite

possible that when using the DECOMPOSED=0 flag with DirectColor, IDL
performs the exact same color translation as for TrueColor (though it
doesn't need to), and then sets the hardware colormap.

JD

Page 3 of 3 ---- Cenerated from conp. |l ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

