Subject: Re: changing contrast and brightness on the fly
Posted by John-David T. Smith on Tue, 19 Jun 2001 23:18:52 GMT

View Forum Message <> Reply to Message

Simon Williams wrote:
Greetings,

I'm looking for tips on how to implement an image display feature that's
bugging me. I'm new to widget programming, trying to get up to speed
with David Fanning's book and other helps, but any short-cuts would be
appreciated.

The job is to display an MRI image and to be able to adjust the image
brightness and contrast interactively, without going to any special
widgets like sliders. The control | have in mind is to

middle-click the image and then have drag right/left control contrast
and drag up/down control brightness.

The plan is to replicate functionality that the end users (radiology
folks) are already familiar with from other image viewers. In the
longer term plan, the display would also be re-sizable and allow
interactive ROI drawing as well.

It sounds easy but | can't find anything similar described on the web
etc. to use as a suitable starting point. Question: is changing the
contrast and brightness to be achieved by re-defining the

color table and re-scaling the data?

VVVVVVVVVVVVVVVVYVYVYVYVYVYVYV

A standard feature of astronomical viewers. For a solution which uses
only colormap fiddling (vs. full image rescaling), see atv:

http://cfa-www.harvard.edu/~abarth/atv/atv.html

This brings up the age old question of how best to dynamically redisplay
images (brightnest/contrast/etc.). With only 255 colors, making the top
100 white to increase brightness is pretty wasteful, and cuts down on
the dynamic visual range... much better (and slower) is to rescale the
image range of interest into the full colormap.

Here's how Andrew (and cohorts) did it:

++++++++H
pro atv_stretchct, brightness, contrast, getmouse = getmouse

; routine to change color stretch for given values of
; brightness and contrast.
; Complete rewrite 2000-Sep-21 - Doug Finkbeiner

Page 1 of 3 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3389
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=13782&goto=25506#msg_25506
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=25506
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

: This routine is now shorter and easier to understand.

common atv_state
common atv_color

; if GETMOUSE then assume mouse positoin passed; otherwise ignore
; inputs

if (keyword_set(getmouse)) then begin
state.brightness = brightness/float(state.draw_window_size[0])
state.contrast = contrast/float(state.draw_window_size[1])
endif

X = state.brightness*(state.ncolors-1)

y = state.contrast*(state.ncolors-1) > 2 ; Minor change by AJB
high = x+y & low = x-y

diff = (high-low) > 1

slope = float(state.ncolors-1)/diff ;Scale to range of 0 : nc-1

intercept = -slope*low

p = long(findgen(state.ncolors)*slope+intercept) ;subscripts to select
tvict, r_vector[p], g_vector|[p], b_vector[p], 8

end
+++++++H

| think it's more intuitive to offset from the current location at

button press (as opposed to absolute position in the window as ATV seems
to do). If you want to spend some time and do it the gold label way,

you could record all mouse positions (x_i,y_i) since button press, and
determine a "speed" of motion from the separation of subsequent

positions (e.g. x=1,2,3,4 vs. x=1,5,9,14), increasing the rate of change

of colormap stretch/mouse movement for faster speeds (a method Apple
pioneered for mouse movement in the MacOS). Tuning this for platform
independence might be difficult, however.

JD

P.S. | also just saw ATV uses the hidden widget_text keyboard event
hack | discovered it seems so long ago... The world is small and funny.

P.P.S. Common blocks bad. Bad common block, bad.

P.P.P.S. My object-oriented direct graphics viewer with plug-in support
and the message passing paradigm is being facelifted for heavy duty work
with a satellite instrument analysis package next year. When it gets in
shape, I'll release it. Some interesting plug-in's already written:

Box statistics, central aperture photometry, image slicing/plotting, box

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

histogram scaling, color-map selection, brightness/contrast selection,
special purpose data interfaces (plane selection, project-specific data
browsing), etc. It's very malleable.

Page 3 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

