Subject: Re: base widgets growing uncontrollably.... ?
Posted by John-David T. Smith on Fri, 27 Jul 2001 20:59:05 GMT

View Forum Message <> Reply to Message

David Fanning wrote:

>

> Paul van Delst writes:

>

>> Each separate compound widget function realises *and* registers the widget using
>> XMANAGER. | did this so that when | killed the top level base, the cleanup

>> routines for all the child compound widgets would be called. If | don't do a

>>

>> XMANAGER, id, 'widget_name', /JJUST_REG, CLEANUP = 'widget_name_cleanup’
>>

>> in the compound widget creation functions, then | am left with a bunch of

>> dangling pointers - that used to be in the compound widget's top-level base user
>> value - hanging about afterwards. The XMANAGER call in *each* compound widget
>> creation function was the only way | could get stuff cleaned up in a

>> heirarchial-type of way. | want to keep the information structure for each

>> compound widget separate in it's own top-level base user value (rather than

>> shoving everything in the god-base uvalue) as | envisage these routines to be

>> usable on their own, not just as a component of a container GUI.

>> |f anyone has a better method of doing this please let me know. | couldn't
>> figure out how to make the child widget cleanup routines (for the compound
>> widgets) "visible" unless | put in separate XMANAGER calls.

| only ever have a single XMANAGER command in a widget
program. But | almost always have compound widgets
(and almost all of these are compound widget objects
these days). The way | clean these widget objects up
is by using a KILL_NOTIFY on the compound widget's
top-level base. This is allowed, because these are

not really top-level bases, of course, and are not
directly managed by XMANAGER. | always store the
object reference in some easy-to-locate uvalue in

the object widget, so it is easy to find the object
reference and destroy it. This cleans everything up

properly.

VVVVVVVVVYVYVYVYVYV

And to point out the obvious, there's no reason you can't make compound
widgets also objects, rather than having an all-in-one object widget
design. You might then have a larger object interface which "composits"
(i.e. includes) the sub-objects directly, perhaps creating them itself.

Then, cleanup a simple matter of putting in place the relevant "Cleanup”
methods, and cleaning up your composited objects in the master Cleanup

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3389
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=13976&goto=25941#msg_25941
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=25941
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

(i.e. "self.fancycompoundobjl->Cleanup"”). You can also allow a single
routine to do double duty as a master kill notify and the event<->object
interface (for those like me who cringe at littering the otherwise

pristine namespace with non-methods):

widget_control, base,set_uvalue=self,KILL_NOTIFY="class_event",/REALIZE
XManager,'class’,base,/NO_BLOCK

Then the event callback looks like:

;; Pass on events *AND* serve as a kill notify (destroy the object)
pro class_event, ev_or_id
if size(ev_or_id,/TYPE) ne 8 then begin
widget_control, ev_or_id, get_uvalue=self
obj_destroy,self
return
endif
widget_control,ev_or_id.top,get_uvalue=self
self->Event,ev_or_id
end

JD

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

