Subject: Re: User selectable lower array bound?
Posted by Paul van Delst on Thu, 09 Aug 2001 13:15:46 GMT

View Forum Message <> Reply to Message

Jeff Guerber wrote:

>

> On 3 Aug 2001 bennetsc@NOSPAMucs.orst.edu wrote:

>

>>> |t seems like such a simple thing to be able to do (with default

>>> gction being start at

>>> index 0) although I'm sure the amount of work required to

>>> implement this would be

>>> horrendous. Still, it shur would be nice.....

>>>

>> That depends upon how IDL already keeps track of arrays

>> internally. In PL/1, for example, one declared an array with the

>> poundaries for each dimension in the form lowerbound:upperbound,
>> where specification of the lower bound and the colon were optional.
>> |f only the upper bound were specified, then the lower bound defaulted
>> to 1. Inits internal representation of arrays, IIRC, PL/1 kept

>> the lower and upper boundaries of each dimension as part of a control
>> block preceding the actual array memory. If a language implementation
>> doesn't already store both boundaries, or equivalently, the lower

>> boundary and number of elements, for each dimension, then yes, adding
>> such support might well be a major headache.

Well, IDL does perform bounds checking, even for arrays passed into a
procedure as arguments, so it must already store at least either the upper
bound or the number of elements (which are equivalent since the lower
bound is fixed). It's likely that this is only done in one place, so
implementing lower bounds in the IDL core might not be all _that_ much
work. HOWEVER...

Having thought about this further, I now think the more serious problem
would be all the library procedures (and not just RSI's!) that assume you
can loop over the elements of any array by going from 0 to
n_elements(array)-1. (Aiiigh!) Unless the bounds are lost across
procedure calls (as Paul pointed out that Fortran does), which can
sometimes be useful but which kind of defeats the point of having
definable bounds, if you ask me.

VVVVVVVVVYVYVYVYVYVYV

Most definitely. There has to be a way of defining the bounds across routine calls. | like
the syntax that Scott Bennet suggested:

my_array(-10:10)

or

Page 1 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1954
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14008&goto=26220#msg_26220
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=26220
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

my_array[-10:10]

or something like that. If there an array like x=FLTARR(10), passing "x" should be the
same as passing x[0:9] if we didn't have to deal with the bloody silly pass by reference
or pass by value problem.

O.k. now it's my turn...

<rant>
That is one beef | have with IDL - that fact that | can't do something like

x = FLTARR(10, 10)
fori=0, 9 do begin

result = my_complicated_func(x[*,i])
endfor

and have the slices of x filled up as it goes instead of
fori=0, 9 do begin
result = my_complicated_func(dummy_x)
X[*, 1] =dummy_x
endfor

Or, even worse, something like:

x = FLTARR(10, 10)
openr,1,'my_file_of _numbers'

fori=0, 9 do begin
readu, 1, X[*, i]

endfor

rather than

fori=0, 9 do begin
readu, 1, dummy_x
X[* 1]=dummy_x

endfor

Please remember these are very simple examples.

The online help even states it's an awkward interface: (From "Parameter Passing
Mechanism")

"The correct, though somewhat awkward, method is as follows:

TEMP = ARR[5]

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

ADD, TEMP, 4
ARR[5] = TEMP"

| think it's silly - at least nowadays - that the user has to even consider *how* the

variables are passed, i.e. by reference or value. | sure don't care and having to declare
dummy arrays for purposes like the above just bugs me. IDL was created out of/from (?) F77
which passed all arguments one way or another (can't remember which.) Fortran compilers
nowadays do it either way based on what optimises better.

</rant>

Not having to bother about reference or value argument passing would maybe clear the way
to allowing the passage of arbitrarily bounded arrays like:

result = my_func(x[-10:20,*])

so that in "my_func" the code recognises the specified lower and upper bounds on the first
array index. If one simply did:

result = my_func(x)

even if x was declared with bounds [-10:20, O:whatever], the function my_func would see
the argument as a 2-D array with bounds of [0:31,0:whatver].

But | agree with Jeff in that making this foolproof for all the existing code would be a
[CAUTION: understatement ahead] Pretty Big Task. You'd have to create an IDL function that
checked the lower and upper bounds, insert that in all the relevant

code/functions/procedures and then make sure that the lower bound == 0 and the upper one
== n_elements(array)-1. Oof. A soul destroying task at best (any grad students out there
volunteer to intern at RSI for, oh | don't know, a couple of years..?) But, that's what

shell scripts and sed are for....

Having said all that | still think IDL is one of the much better things that have come to
pass since sliced bread. :0D I'd be lost without it.

paulv

p.s. | *was* just kidding about the script/sed thing.....

Paul van Delst A little learning is a dangerous thing;

CIMSS @ NOAA/NCEP Drink deep, or taste not the Pierian spring;

Ph: (301)763-8000 x7274 There shallow draughts intoxicate the brain,

Fax:(301)763-8545 And drinking largely sobers us again.
Alexander Pope.

Page 3 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

