Subject: Re: A distracting puzzle
Posted by John-David T. Smith on Tue, 18 Sep 2001 16:05:35 GMT

View Forum Message <> Reply to Message

Craig Markwardt wrote:

>

>

>

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

VVVVVVVVYVYVYVYVYVYV

JD Smith <jdsmith@astro.cornell.edu> writes:

Given a polygon defined by the vertex coordinate vectors x & y, we've
seen that we can compute the indices of pixels roughly within that
polygon using polyfillv(). You can run the code attached to set-up a
framework for visualizing this. It shows a 10x10 pixel grid with an
overlain polygon by default, with pixels returned from polyfillv()
shaded.

You'll notice that polyfillv() considers only integer pixels, basically
truncating any fractional part of the input polygon vertices (you can
see this by plotting fix([x,x[0]]), etc.). For polygons on a fractional
grid, this error can be significant.

The problem posed consists of the following:

Expand on the idea of the polyfillv algorithm to calculate and return
those pixels for which *any* part of the pixel is contained within the
polygon, along with the fraction so enclosed.

For instance, the default polygon shown (invoked simply as
"poly_bounds"), would have a fraction about .5 for pixel 34, 1 for
pixels 33 & 43, and other values on the interval [0,1] for the others.
Return only those pixels with non-zero fractions, and retain polygon
vertices in fractional pixels (i.e. don't truncate like polyfillv()

does).

Question: instead of making it a 10x10 image, could you make it a
100x100 image, or even a 1000x1000 image? Then you could resample
back down using rebin, after converting to float of course, and get a
reasonably accurate estimate of the area enclosed.

This is essentially performing an integral over a complex 2-d region.
Another possibility is to do it by Monte Carlo. For example, cast a

bunch of random 2-numbers onto the plane, and only accept those within
the polygon (at least David has an IN_POLY routine, right?), and

finally compute the fraction of accepted pairs.

If you want it exactly, then it sounds like you will be performing
polygon intersections, which are non-trivial.

Pag

el of 2 ---- CGenerated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3389
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14271&goto=26690#msg_26690
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=26690
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

In case no one noticed, this is almost the same problem that font
anti-aliasing and drawing smooth shapes with limited pixels present to
graphics programmers. One approach is indeed over-sampling. If each
pixel is over-sampled to a 16x16 pixel grid, and then something like
polyfillv() is used on *that* grid with an appropriately scaled up

polygon, you can downsample the result (using, you guessed it, rebin()),
and get an approximation (with a dynamic range of 256) to the area
intercepted. The same guys also use stochastic sampling (aka Monte
Carlo) to do the same thing, but with a smoother dithering. This might
be especially good for strange shapes with difficult to calculate areas,
but for straight-lined polygons, | had something more exact in mind.

The technique | was interested in is *area* sampling, so yes, the
polygon intersections seem necessary for calculation. The reason is
that | want much higher resolution than 100 or 256 levels of area, and
ideally the algorithm would scale well to normal arrays, which typically
have a much larger dimension than 10x10.

JD

Page 2 of 2 ---- Cenerated from conp. |l ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

