
Subject: Re: Xmanager R US
Posted by John-David T. Smith on Tue, 25 Sep 2001 23:02:09 GMT
View Forum Message <> Reply to Message

"Pavel A. Romashkin" wrote:
>
> I know they told us not to do this, but...
> Anyone who looked into Xmanager saw that it uses event directing loops.
> It tracks managed widgets using common blocks. However, WIDGET_CONTROL
> must have an internal reference to WIDGET_EVENT, because the following
> snippet works in a fresh IDL session, with no Xmanager common blocks established:
>
> ;*******************
> pro tlb_event, ev
> help, ev, /str
> end
> ;*******************
> function b_func, ev
> help, ev, /str
> ev = create_struct(ev, 'my_field', 'My_value')
> return, ev
> end
> ;*******************
> pro junk, tlb
> tlb = widget_base(event_pro='tlb_event')
> but = widget_button(tlb, value='press', event_func='b_func')
> widget_control, tlb, /realize, /managed
> end
> ;*******************
>
> Anybody knows why and how does the above work?
> This makes me wonder, why do we need Xmanager with its loops?
> Besides, the online help says that an Event_pro or Event_func are called
> by Widget_event using widget's ID as an argument. As far as I could see,
> the widget's event structure is passed as an argument instead. Oh well.
> A typo, I guess.
> Cheers,
> Pavel

This most surely relates to non-blocking mode, which, when introduced,
moved much of the event handling code out of XManager, and into the
internal IDL code itself. Here's a telling comment from xmanager.pro:

 ; This is the standard XMANAGER event loop. It works by dispatching
 ; events for all managed widgets until there are none left that
require
 ; blocking. In the best case, the command line is able to dispatch
events

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3389
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14310&goto=26820#msg_26820
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=26820
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 ; and there are no clients that require blocking (specified via the
 ; NO_BLOCK keyword to XMANAGER) and we are able to return immediately.

So, really, when you use NO_BLOCK, you're effectively telling XManager
"Don't worry about really managing this widget, just return
immediately... it's being taken care of." And the thing doing the care
taking is inside IDL's command-line reading loop itself, which
internally calls widget_event(). So obviously, not calling XManager at
all is almost equivalent, except you won't be able to use XRegistered()
and others that rely on the common blocks correctly.

What I didn't understand is how your trick works without the secret call
to

	WIDGET_CONTROL, /XMANAGER_ACTIVE_COMMAND, id

you'll find in xmanager. I had presumed that this marks a widget as
being "listened to" by the command line code, and beyond XManager's
purview, and only then will the command line process events for it.

I think the answer to this conundrum reflects RSI's intentions upon
introducing non-blocking mode: that all widgets should run without
blocking, making XManager an unecessary relic. Then during v5 beta
testing, they found people who relied on blocking, and they changed the
default behavior at the last minute. You've stumbled on a side-effect
of this earlier decision with the MANAGED keyword there.

My explanation: by default the command line is running widget_event() on
all widgets it knows about (including those submitted by
widget_control). Only when you actually run XManager will it set about
blocking (not returning, but calling widget_event() itself in a loop)
for those widgets for which you set NO_BLOCK=0. The internal event loop
code itself does not discriminate between "blocking" and "non-blocking"
widgets. I verified this with the following change:

pro junk, tlb,XAC=xac
tlb = widget_base(event_pro='tlb_event')
but = widget_button(tlb, value='press', event_func='b_func')
widget_control, tlb, /realize,/managed, $
 XMANAGER_ACTIVE_COMMAND=keyword_set(xac)
print,'Blocking: ',widget_info(/XMANAGER_BLOCK)
end

And now try:

IDL> junk
Blocking: 1
** Structure WIDGET_BUTTON, 4 tags, length=16:

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 ID LONG 6
 TOP LONG 5
 HANDLER LONG 6
 SELECT LONG 1
** Structure <825c72c>, 5 tags, length=24, refs=1:
 ID LONG 6
 TOP LONG 5
 HANDLER LONG 5
 SELECT LONG 1
 MY_FIELD STRING 'My_value'

IDL> junk,XAC=1
Blocking: 0
** Structure WIDGET_BUTTON, 4 tags, length=16:
 ID LONG 12
 TOP LONG 11
 HANDLER LONG 12
 SELECT LONG 1
** Structure <81b6554>, 5 tags, length=24, refs=1:
 ID LONG 12
 TOP LONG 11
 HANDLER LONG 11
 SELECT LONG 1
 MY_FIELD STRING 'My_value'

Events are processed in both cases, but in one, it's supposedly
"blocking".

So you see, without the XMANAGER_ACTIVE_COMMAND keyword set, things are
set up for XManager to block, only they never get a chance to, since
XManager isn't ever called! It's the same behavior if blocking is
"disabled" with the XMANAGER_ACTIVE_COMMAND keyword. Since XManager
never enters the equation, there can be no blocking, and the events keep
on flowing.

JD

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

