Subject: Re: basic 3D data manipulation question Posted by Craig Markwardt on Wed, 07 Nov 2001 20:14:36 GMT View Forum Message <> Reply to Message

judy.karpen@nrl.navy.mil (Judy Karpen) writes:

- > Hi,
- >
- > Sorry for posting if this is an easy question to answer, but so far
- > I've combed the manuals and the netgroup archives without finding one.
- > I don't use IDL all the time, so I am a perpetual beginner
- > unfortunately.

>

- > I am trying to visualize 3D magnetic field lines, by updating an IDL
- > program written by a colleague that assumes uniformly gridded data. My
- > "data" (simulation results, actually) are on a nonuniform cartesian
- > grid (250x95x95), so my first step is to project the field components
- > onto a uniform grid in all directions. I've found a number of routines
- > that do the opposite --- that is, interpolate a regularly gridded
- > function onto an irregular set of points -- but nothing appropriate.
- > Perhaps I am misunderstanding something in the GRID3 documentation,
- > but it says that the input arrays x,y,z, and f have to have the same
- > number of elements, which rules out having different numbers of points
- > in each direction.

Hi Judy--

I am not sure why the constraints of GRID3 are a problem. What it is asking you to do is label each point with its X Y and Z coordinates. Since you have NXxNYxNZ points, you will need the same number of X values, Y values and Z values.

In the example below I make a 10x10x10 3D array with measurement positions offset slightly by random displacements. I expand the 1D arrays to 3D arrays using the standard REBIN/REFORM technique. I compute a function of these values, a simple quadratic. Finally, I reinterpolate onto a regular grid. The results are quite remarkably good, and it's in full 3D.

```
Good luck,
Craig
```

```
x = findgen(10)+randomn(seed,10)*0.1 ;; Label X Y and Z axes
y = findgen(10)+randomn(seed,10)*0.1
z = findgen(10)+randomn(seed,10)*0.1
xxx = rebin(reform(x,10,1,1),10,10,10) ;; Convert to X Y & Z 3D arrays
yyy = rebin(reform(y,1,10,1),10,10,10)
zzz = rebin(reform(z,1,1,10),10,10,10)
```

;; Compute a function of X Y & Z a simple quadratic in this case fff = xxx^2 + yyy^2 + zzz^2
;; Create new grid of regularly sampled points xnew = findgen(10) & ynew = findgen(10) & znew = findgen(10)
ff2 = grid3(xxx, yyy, zzz, fff, xnew, ynew, znew, /grid)
Craig B. Markwardt, Ph.D. EMAIL: craigmnet@cow.physics.wisc.edu Astrophysics, IDL, Finance, Derivatives Remove "net" for better response