
Subject: Re: Strange problem
Posted by Martin Downing on Mon, 26 Nov 2001 15:00:17 GMT
View Forum Message <> Reply to Message

Andre,

Joshi is right, this behaviour is due to the lack of precision in
floating point number representation. With your for loop

 for i=0., 0.801, 0.1 do print,i

The code execution can more easily be visualised as

 i = 0.
 while i LE 0.8 do begin
 print, i
 i = i + 0.1
 endwhile

Thus:

 IDL> for i=0., 0.8, 0.1 do print,i
 0.000000
 0.100000
 0.200000
 0.300000
 0.400000
 0.500000
 0.600000
 0.700000

So what was the final value of i?

 IDL> print, i
 0.800000

Oh, isnt that the value of the upper bound?

 IDL> print, i EQ 0.8
 0
 IDL> print, i - 0.8
 5.96046e-008

Clearly not! Slightly more than 0.1 was added each time, so there was a
small excess to i when representing 0.8

So the moral is that you have to be very careful when applying comparison
operators to floating point numbers, one of which is implicitly applied in

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2741
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=1899&goto=28133#msg_28133
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=28133
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

the FOR statement. Now you realise the problem, the answer is to be a little
less strict with your comparisons. With FOR loops you can add a small
excess, relative to the increment, to the upper bound:

 IDL> for i=0., 0.8001, 0.1 do print,i
 0.000000
 0.100000
 0.200000
 0.300000
 0.400000
 0.500000
 0.600000
 0.700000
 0.800000

Out of interest notice that the final value of "i" is now 0.9:
 IDL> print, i
 0.900000

> should i be worried?
Well if you write code which depends on floating point numbers having
perfect precision then yes!
If you wanted to compare two floats for equality, you have to rethink what
you mean by "equal", i.e. how exact does this application need the variables
to be?
Relying on doubles is not a robust solution, so instead of writing:

 IF a EQ b THEN ...

write

 myPrecision = 0.001
 IF abs(a-b) LT myPrecision THEN

I hope this helps

Martin

"Bhautik Joshi" <nbj@imag.wsahs.nsw.gov.au> wrote in message
news:3C019CFD.B20DB925@imag.wsahs.nsw.gov.au...
>> Anybody know what's going on?
>
> My spin on it:
>
> Well, I think it may be a problem that goes right down to the core, and
> is not just restricted to FOR loops.

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> Example:
>
> MOO>a=replicate(0.1,100)
> MOO>print, total(a)
> 10.0000
> MOO>print, total(a) - 0.1*100
> 1.90735e-06
>
> argh! where I think the problem may lie is with the binary
> representation of floating point numbers. Now, its been a
> loooooooooooooooooooooooong while since I did computer architecture
> (yes, it is a real subject at uni) but as far as I remember, in floating
> point binary, there is no 'exact' representation for 0.1.
>
> However, lets take 0.5 - which is a quarter of 2; something nice and
> (pardon the expression) base-twoish.
>
> MOO>a=replicate(0.5,100)
> MOO>print, total(a) - 0.5*100
> 0.00000
>
> Lets change the game slightly again:
>
> MOO>a=replicate(0.51,100)
> MOO>print, total(a) - 0.51*100
> -4.95911e-05
>
> should i be worried?
>
>
> --
> /--(__)----- ----\
> | nbj@imag.wsahs.nsw.gov.au | phone: 0404032617 |..|--\ -moo |
> | ICQ #: 2464537 | http://cow.mooh.org | |--| |
> \--\OO/|| ------/

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

