
Subject: Recursive object destruction, Was: IDL Shapefile Object
Posted by Richard Younger on Fri, 30 Nov 2001 15:56:48 GMT
View Forum Message <> Reply to Message

David Fanning wrote:
>
> I've never used it. (Guess I should make a habit
> of reading the documentation that *is* there!)
> But I can imagine a case for it.
>
[...]
>
> In this case a HANG_ON_DONT_DO_IT keyword on the cleanup
> method might be appropriate.

Sort of on this topic, I'm looking for some advice on a routine that I
wrote before IDL 5.5 came out to do this sort of thing. Maybe someone
else will find it useful. It has has a few minor advantages and a
couple of disadvantages over HEAP_FREE.

In particular, I have objects with pointers to structures with arrays of
pointers to structures with pointers. In a pseudo-IDL syntax, that's
Object->(*struct1[].(*struct2.(*data[]))). And I wanted to write a
routine to delete these suckers generically. I call it Destroy_Thing.

First as an advantage, this routine doesn't access IDL's internal
tables, so one of the previously mentioned "frightener" clauses on
HEAP_FREE searching the entire heap table is circumvented. This may be
nice for those of us who have verified that IDL can handle more than an
int's worth of heap variables. But I don't know exactly how frightening
that clause is, so I don't know how big an advantage this is.

In the 'mixed' category, the Obj_destroy call in has keyword
inheritance. So keywords, like HANG_ON_DONT_DO_IT, in your cleanup
routines are fine, but not parameters. I've never actually used this
feature (my top level objects have no destructor keywords), but it was
cheap to add, so I did.

On the down side, there's some issues with the recursive passing of
structure members. Since structure members are always passed by value,
I'm a little worried that using this destroy routine on, say, structures
with large arrays in them would use up more memory (and time spent
copying data to be destroyed anyway) than is reasonable. Does anybody
have suggestions on this? Am I right to be worried?

So I don't know if some of the choices I made are the correct ones. Am I
using _REF_EXTRA right? Is there any point to checking whether I'm
dealing with a (structure member) copy or the real McCoy? What about

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3711
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14739&goto=28284#msg_28284
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=28284
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

undefining vs. setting the variable to zero and redundant destruction?

Are there flaws that I haven't seen?

Boy, I'm just posting up a storm this week.

Thanks,
Rich

--
Richard Younger

;*************************************
; Program: Destroy_Thing.pro
; Purpose: Take some variable of any type, turn it into a NULL
; reference or undefine it, and free all of its
; constituents.
; Inputs: thing = something of any type to be undefined.
; keywords to be passed to any and all object cleanup
; methods required
;
; Author: Richard D. Younger
; Date: August, 2001
;
;*************************************

PRO destroy_thing, thing, copy_flag=copy_flag, _REF_EXTRA=extr

 datatype = Size(thing, /TName)

 CASE datatype OF
 'STRUCT': BEGIN
 FOR j=0, N_Elements(thing)-1 DO BEGIN
 N = N_Tags(thing[j])
 FOR i=0, N-1 DO BEGIN
 Destroy_Thing, thing[j].(i), /copy_flag, $
 _REF_EXTRA=extr
 ENDFOR
 ENDFOR
 END

 'POINTER': BEGIN
 pval = Ptr_Valid(thing)
 FOR j=0, N_Elements(pval)-1 DO BEGIN
 IF pval[j] THEN BEGIN
 Destroy_Thing, *(thing[j]), copy_flag=copy_flag, $
 _REF_EXTRA=extr
 PTR_FREE, thing

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 ENDIF
 ENDFOR
 thing = PTR_NEW()
 END

 'OBJREF': OBJ_DESTROY, thing, _REF_EXTRA=extr

 'UNDEFINED': RETURN

 ELSE: ;do nothing: no recursion req'd
 ENDCASE

 IF NOT Keyword_Set(copy_flag) THEN $
 dummy = TEMPORARY(thing) ;thing = 0

END

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

