Subject: Re: image cutting,

Posted by dinhng on Thu, 20 Dec 2001 18:30:28 GMT

View Forum Message <> Reply to Message

Hi Leon Majewski,

Thank you very much for your response.

In fact, my data is a set of landsat images (can be in both .tiff anf .hdf format) in seprate files.

I want to do some classification (in smaller area) but in ENVI I can�t see any function can do this with seprate files. So I have to put 6 bands together in one file. The output file can be any type that can read by ENVI.

Because I just begin learning IDL a week before so it take time to understand your codes.

When I run "Test_HDF_Cropping_GenData", there is a message "HDF_SD_START: Unable to start the HDF-SD interface"

When I run "Test_HDF_Cropping", the message is "Execution halted at:

HDF_CROPPING 19 E:\IDLPRO\HDF_Cropping.pro

% TEST_HDF_CROPPING 87

E:\IDLPRO\HDF_Cropping.pro" and stop at line

"HDF_SD_GETINFO,sds_id_i,NAME=NAME"

I don�t know which file(s) below have to be in working directory

before running progam:

Filename = 'C:\test2.hdf'

oFilename= 'C:\test2sm.hdf'

Filename = 'MyLargeFile.hdf'

oFilename= 'MySmallFile.hdf'

And I wrote few lines to make a multi-channel image from seprate band like this. It works with 3 bands, but it doensi¿½t works with 6 bands. Could you explain for me why?

=========

PRO Composite, Red=red, Green=green, Blue=blue

cd, 'e:\IDLPRO\'

band1 = READ_TIFF('tm1.tiff')

band2 = READ_TIFF('tm2.tiff')

band4 = READ TIFF('tm4.tiff')

WRITE_TIFF, 'multi3.tif', red=band1, green=band2, blue=band4,

PLANARCONFIG=2

END

========

PRO Composite6, ba1=ba1, ba2=ba2, ba3=ba3, ba4=ba4, ba5=ba5, ba7=ba7

```
cd, 'e:\IDLPRO\'
b1 = READ\_TIFF('tm1.tiff')
b2 = READ_TIFF(tm2.tifft)
b3 = READ\_TIFF('tm3.tiff')
b4 = READ_TIFF('tm4.tiff')
b5 = READ\_TIFF('tm5.tiff')
b7 = READ\_TIFF('tm7.tiff')
WRITE_TIFF, 'multi6.tif', ba1=b1, ba2=b2, ba3=b3, ba4=b4, ba5=b5,
ba7=b7; PLANARCONFIG=1
END
Many thanks again,
Huong Dinh
> Hi Dinh
> You might need to provide a little more information. HDF files can store
> a wide variety of information types - each needing to be accessed in
> it's own special way.
> My guess is that you want to access a scientific data set (SDS; ie use
> the SD interface) and crop this to a 200x200 segment. Then store this in
> a new HDF file as an SDS.
>
> A couple of questions arise:
> a) is the data you are trying to access an SDS?
> b) is the original data set all in one block (12x1000x1000) or separate
    SDSs?
> c) does the output file need to be HDF (see d)
> d) is there any meta-data that is required to be copied from the
    original file to the output file
> e) ...
>
> Anyway, here is a program (included below - limited error checking /
> testing / thinking ;i; ½) ) to get you started. The main points in this
> are:
> a) the START and COUNT keywords to HDF_SD_GETDATA:
```

```
HDF_SD_GETDATA, sds_id_i, SmallDataSet, START=Offset, COUNT=SegSize
>
>
> b) the writting of data to an HDF file:
   new_sds_id = HDF_SD_CREATE(sd_oid, $
>
   string('sub '+NAME), size(SmallDataSet, /dimensions))
>
   HDF_SD_ADDDATA, new_sds_id, SmallDataSet
>
>
 c) you need to know the index numbers of the original 12 data sets:
   Get\_SDSs = [0,1,2,3,4,5,6,7,8,9,10,11]
>
>
 Leon
>
>
  >
 FUNCTION HDF_Cropping, inFilename, outFilename, $
  Offset, SegSize, Get_SDSs
>
>
 Open the HDF file in SD read mode
  sd_id = HDF_SD_START(inFilename, /READ)
>
> ;Find out any some about the file
 HDF SD FILEINFO,sd id,NumSDS,attributes
 IF NumSDS GE 1 THEN BEGIN
  ;If there are SDs found in the file, create an output file
   sd_oid = HDF_SD_START(outFilename, /CREATE)
>
   FOR i = 0, n_elements(Get_SDSs)-1 DO BEGIN
>
   ;Select the i^th data set (from the Get SDSs above)
>
   sds id i = HDF SD SELECT(sd id, Get SDSs[i])
>
   If sds id i[0] ne 0 then begin
>
>
   ;Retrieve the data segment
>
    HDF_SD_GETINFO,sds_id_i,NAME=NAME
>
    HDF_SD_GETDATA, sds_id_i, SmallDataSet, $
>
    START=Offset, COUNT=SegSize
>
   :End access to the dataset
>
    HDF_SD_ENDACCESS, sds_id_i
>
>
   ;Now that the data segment has been obtained, store it:
>
    new_sds_id = HDF_SD_CREATE(sd_oid, $
>
    string('sub '+NAME), $
>
    size(SmallDataSet, /dimensions))
>
    HDF_SD_ADDDATA, new_sds_id, SmallDataSet
>
>
    HDF_SD_ENDACCESS, new_sds_id
>
   ENDIF
>
   ENDFOR
>
>
```

```
;Close the output file
  HDF_SD_END, sd_oid
> ;Close the input file
  HDF_SD_END,sd_id
 ;Return to the calling program letting it know everything went ok
  RETURN, 1
  ENDIF
>
 HDF_SD_END,sd_id
  RETURN, 0
 END
 >
> PRO Test_HDF_Cropping_GenData
> Filename = 'C:\test2.hdf'
> oFilename= 'C:\test2sm.hdf'
>
> StartPos = [400,400]
 ImageSize= [200,200]
 ;generate the test data file:
 TestData = dist(1000)
> sd_oid = HDF_SD_START(Filename, /CREATE)
> new_sds_id = HDF_SD_CREATE(sd_oid, 'My Test Data', $
> size(TestData, /dimensions))
> HDF SD ADDDATA, new sds id, TestData
> HDF SD ENDACCESS, new sds id
> HDF_SD_END, sd_oid
  ;Make an array that holds the index of the data set to be subsampled
  Get_SDSs = [0,0,0,0]
>
>
  Result = HDF_Cropping(Filename, oFilename, $
   StartPos, ImageSize, Get SDSs)
  a = hdf_browser(oFilename)
> END
>
>
> PRO Test_HDF_Cropping
> Filename = 'MyLargeFile.hdf'
> oFilename= 'MySmallFile.hdf'
>
> StartPos = [400,400]
> ImageSize= [200,200]
>
```

```
;Make an array that holds the index of the data set to be subsampled
  Get\_SDSs = [0,1,2,3,4,5,6,7,8,9,10,11]
>
  Result = HDF_Cropping(Filename, oFilename, $
   StartPos, ImageSize, Get_SDSs)
  a = hdf_browser(oFilename)
 END
> Leon Majewski
>
> Remote Sensing & Satellite Research Group
> Curtin University of Technology, Perth, Australia
> email: majewski@ses.curtin.edu.au
```