
Subject: Re: Fitting curves
Posted by larkum on Tue, 06 Sep 1994 08:03:30 GMT
View Forum Message <> Reply to Message

Thanks to the people that responded and particularly to Amara Graps for
the example procedures that solved my problem very quickly.

I thought I would post a follow-up as some may be in the same position
as I was and others may find the experience interesting. My problem
was that somehow I hadn't got the message that you were actually
supposed to _rewrite_ the built-in FUNCT procedure with the appropriate
function. It still seems kind of clumsy to me.

Anyway, during the search for information I down-loaded some archives of
comp.lang.idl-pvwave from IDLmeteo (ftp.sma.ch, /pub/idlmeteo/News_Archives)
which I will go straight to next time, since it is a source of
information better even than the FAQ. I found a discussion in which
David Hembroff had made a similar plea for help and had been given a
succint and useful reply from Eric Korpela. From his reply it appears to
me that there are different versions of CURVEFIT floating around.
Specifically, his procedure uses the keyword FUNCTION_NAME which is a
string that gives the name of the procedure to be used in place of FUNCT.
This is a much better idea, but it isn't part of the procedure we got
with our version of PV-Wave version 4.2.

On the other hand, I liked the modifications made by Amara Graps in his
version of CURVEFIT, so I put in the (trivial) code to include the
FUNCTION_NAME keyword into CURVEFIT and the resulting MYCURVEFIT is
given below.

Once again, thank you to all that replied.

--------------------------- Cut Here ---------------------------------
;
; $Id: curvefit.pro,v 1.1 1991/03/29 12:27:07 jeffry Exp $
;
PRO MYCURVEFIT, X, Y, W, A, SIGMAA, YFIT, COVAR, function_name=function_name
;+
; NAME:
;	MYCURVEFIT
; PURPOSE:
;	Non-linear least squares fit to a function of an
;	arbitrary number of parameters.
;	Function may be any non-linear function where
;	the partial derivatives are known or can be approximated.
; CATEGORY:
;	E2 - Curve and Surface Fitting
; CALLING SEQUENCE:

Page 1 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=325
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=1954&goto=2876#msg_2876
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=2876
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;	MYCURVEFIT,X,Y,W,A,SIGMAA,YFIT,COVAR
; INPUTS:
;	X = Row vector of independent variables.
;	Y = Row vector of dependent variable, same length as x.
;	W = Row vector of weights, same length as x and y.
;		For no weighting
;		w(i) = 1., instrumental weighting w(i) =
;		1./y(i), etc.
;	A = Vector of nterms length containing the initial estimate
;		for each parameter. If A is double precision, calculations
;		are performed in double precision, otherwise in single prec.
;
; INPUT PARAMETERS:
;	FUNCTION_NAME = Fitting function to be used. The default
;		is the Gaussian function defined in FUNCT.
; OUTPUTS:
;	A = Vector of parameters containing fit.
;	Function result = YFIT = Vector of calculated
;		values.
; Covariance matrix= error of YFIT showing correlations
;	Sigmaa = Vector of standard deviations for parameters
;		A.
;	
; COMMON BLOCKS:
;	NONE.
; SIDE EFFECTS:
;	The function to be fit must be defined and called FUNCT.
;	For an example see FUNCT in the IDL User's Library.
;	Call to FUNCT is:
;	FUNCT,X,A,F,PDER
;	Alternatively, the FUNCTION_NAME keyword can be used to
;	specify a different procedure definition
; where:
;	X = Vector of NPOINT independent variables, input.
;	A = Vector of NTERMS function parameters, input.
;	F = Vector of NPOINT values of function, y(i) = funct(x(i)), output.
;	PDER = Array, (NPOINT, NTERMS), of partial derivatives of funct.
;		PDER(I,J) = Derivative of function at ith point with
;		respect to jth parameter. Optional output parameter.
;		PDER should not be calculated if parameter is not
;		supplied in call (Unless you want to waste some time).
; RESTRICTIONS:
;	NONE.
; PROCEDURE:
;	Copied from "CURFIT", least squares fit to a non-linear
;	function, pages 237-239, Bevington, Data Reduction and Error
;	Analysis for the Physical Sciences.
;

Page 2 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;	"This method is the Gradient-expansion algorithm which
;	compines the best features of the gradient search with
;	the method of linearizing the fitting function."
;
;	Iterations are perform until the chi square changes by
;	only 0.1% or until 20 iterations have been performed.
;
;	The initial guess of the parameter values should be
;	as close to the actual values as possible or the solution
;	may not converge.
;
; MODIFICATION HISTORY:
;	Written, DMS, RSI, September, 1982.
;	Modified ;to output covariance matrix, ALG ,August 1987
;	Modified ; function_name keyword, Matthew Larkum, September, 1994
;
 ;--- -------------
;-
	if not keyword_set(function_name) then function_name = 'FUNCT'
	ON_ERROR,2		;RETURN TO CALLER IF ERROR
	A = 1.*A		;MAKE PARAMS FLOATING
	NTERMS = N_ELEMENTS(A)	;# OF PARAMS.
	NFREE = (N_ELEMENTS(Y)<N_ELEMENTS(X))-NTERMS ;Degs of freedom
	IF NFREE LE 0 THEN STOP,'Curvefit - not enough points.'
	FLAMBDA = 0.001		;Initial lambda
	DIAG = INDGEN(NTERMS)*(NTERMS+1) ;SUBSCRIPTS OF DIAGONAL ELEMENTS
;
	FOR ITER = 1,20 DO BEGIN	;Iteration loop
;
;		EVALUATE ALPHA AND BETA MATRICIES.
;
	ok = execute(function_name + ',X,A,YFIT,PDER')	;COMPUTE FUNCTION AT A.
	BETA = (Y-YFIT)*W # PDER
	ALPHA = TRANSPOSE(PDER) # (W # (FLTARR(NTERMS)+1)*PDER)
;
	CHISQ1 = TOTAL(W*(Y-YFIT)^2)/NFREE ;PRESENT CHI SQUARED
;
;	INVERT MODIFIED CURVATURE MATRIX TO FIND NEW PARAMETERS.
;
	REPEAT BEGIN
		C = SQRT(ALPHA(DIAG) # ALPHA(DIAG))
		ARRAY = ALPHA/C
		ARRAY(DIAG) = (1.+FLAMBDA)
		ARRAY = INVERT(ARRAY)
		B = A+ ARRAY/C # TRANSPOSE(BETA) ;NEW PARAMS
		ok = execute(function_name+',X,B,YFIT')	;EVALUATE FUNCTION
		CHISQR = TOTAL(W*(Y-YFIT)^2)/NFREE ;NEW CHISQR
		FLAMBDA = FLAMBDA*10.	;ASSUME FIT GOT WORSE

Page 3 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

		ENDREP UNTIL CHISQR LE CHISQ1
;
 FLAMBDA = FLAMBDA/100.	;DECREASE FLAMBDA BY FACTOR OF 10
	A=B			;SAVE NEW PARAMETER ESTIMATE.
	PRINT,'ITERATION =',ITER,' ,CHISQR =',CHISQR
	PRINT,A
	IF CHISQ1 eq 0 or ((CHISQ1-CHISQR)/CHISQ1) LE .001 THEN GOTO,DONE ;Finished?
	ENDFOR			;ITERATION LOOP
;
	PRINT,'CURVEFIT - Failed to converge'
;
DONE:	ok = execute(function_name+',X,A,YFIT,PDER')
	ALPHA = TRANSPOSE(PDER) # (W # (FLTARR(NTERMS)+1)*PDER)
	COVAR = INVERT(ALPHA)
	SIGMAA = SQRT(COVAR(DIAG)) 	;RETURN SIGMA'S

END

Page 4 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

