Subject: Re: 3d matrices and LUSOL
Posted by Craig Markwardt on Thu, 24 Jan 2002 23:22:57 GMT
View Forum Message <> Reply to Message

> I am in desperate need of help!! > I have a set of linear equations represented as matrix arrays which need to be solved using the LU decomposition technique. The two arrays consist of a 14 x 14 array, and a 14 x 1 array, but each element in the matrices itself is an array of 221 elements (ie the matrices are 3dimensional?) > So i need to solve the system using LUDC and LUSOL, but i have to do it 221 times (ie a solution for each 'layer' of the matrices) > The first question is, is there a way to declare the two input arrays as 3-d? I tried defining the matrix using matrix=[[a,b,],[,] etc] where a,b, = arrays, but this isn't recognised as a 14 x14 square matrix which is 221 elements 'deep'. Instead, it expands each array across the row, making it a 3094 x 14 matrix. (it needs to be square to run LUDC) > Is there a way i can force IDL to see it as a 'layered' 3-d matrix? First of all, IDL can do up to eight dimensions. Since you mention the notation [[a,b,]], you are probably not getting the syntax exactly right. It doesn't really matter though. If you really have a 3094 x 14 matrix, it is straightforward to use REFORM to make that 221x14x14 matrix (ie, matrix = reform(matrix,221,14,14)) I am pretty sure that LUDC/LUSOL will not handle a "3-d" matrix. Can your solution be applied component by component? I.e., can you solve each of the 221 14x14 matrix equations separately using a FOR loop? Good luck, Craig Craig B. Markwardt, Ph.D. EMAIL: craigmnet@cow.physics.wisc.edu	"M" <mrmanish@bigfoot.com> writes: > Hi all,</mrmanish@bigfoot.com>
 be solved using the LU decomposition technique. The two arrays consist of a > 14 x 14 array, and a 14 x 1 array, but each element in the matrices itself is an array of 221 elements (ie the matrices are 3dimensional?) So i need to solve the system using LUDC and LUSOL, but i have to do it 221 times (ie a solution for each 'layer' of the matrices) The first question is, is there a way to declare the two input arrays as 3-d? I tried defining the matrix using matrix=[[a,b,],[,] etc] where a,b, = arrays, but this isn't recognised as a 14 x 14 square matrix which is 221 elements 'deep'. Instead, it expands each array across the row, making it a 3094 x 14 matrix. (it needs to be square to run LUDC) Is there a way i can force IDL to see it as a 'layered' 3-d matrix? First of all, IDL can do up to eight dimensions. Since you mention the notation [[a,b,]], you are probably not getting the syntax exactly right. It doesn't really matter though. If you really have a 3094 x 14 matrix, it is straightforward to use REFORM to make that 221x14x14 matrix (ie, matrix = reform(matrix,221,14,14)) I am pretty sure that LUDC/LUSOL will not handle a "3-d" matrix. Can your solution be applied component by component? I.e., can you solve each of the 221 14x14 matrix equations separately using a FOR loop? Good luck, Craig Craig B. Markwardt, Ph.D. EMAIL: craigmnet@cow.physics.wisc.edu 	· · · · · · · · · · · · · · · · · · ·
> So i need to solve the system using LUDC and LUSOL, but i have to do it 221 > times (ie a solution for each 'layer' of the matrices) > The first question is, is there a way to declare the two input arrays as > 3-d? I tried defining the matrix using matrix=[[a,b,],[,] etc] > where a,b, = arrays, but this isn't recognised as a 14 x14 square matrix > which is 221 elements 'deep'. Instead, it expands each array across the > row, making it a 3094 x 14 matrix. (it needs to be square to run LUDC) > ls there a way i can force IDL to see it as a 'layered' 3-d matrix? First of all, IDL can do up to eight dimensions. Since you mention the notation [[a,b,]], you are probably not getting the syntax exactly right. It doesn't really matter though. If you really have a 3094 x 14 matrix, it is straightforward to use REFORM to make that 221x14x14 matrix (ie, matrix = reform(matrix,221,14,14)) I am pretty sure that LUDC/LUSOL will not handle a "3-d" matrix. Can your solution be applied component by component? I.e., can you solve each of the 221 14x14 matrix equations separately using a FOR loop? Good luck, Craig	 be solved using the LU decomposition technique. The two arrays consist of a 14 x 14 array, and a 14 x 1 array, but each element in the matrices itself is an array of 221 elements (ie the matrices are 3dimensional?)
> The first question is, is there a way to declare the two input arrays as > 3-d? I tried defining the matrix using matrix=[[a,b,],[,] etc] > where a,b, = arrays, but this isn't recognised as a 14 x14 square matrix > which is 221 elements 'deep'. Instead, it expands each array across the > row, making it a 3094 x 14 matrix. (it needs to be square to run LUDC) > > Is there a way i can force IDL to see it as a 'layered' 3-d matrix? First of all, IDL can do up to eight dimensions. Since you mention the notation [[a,b,]], you are probably not getting the syntax exactly right. It doesn't really matter though. If you really have a 3094 x 14 matrix, it is straightforward to use REFORM to make that 221x14x14 matrix (ie, matrix = reform(matrix,221,14,14)) I am pretty sure that LUDC/LUSOL will not handle a "3-d" matrix. Can your solution be applied component by component? I.e., can you solve each of the 221 14x14 matrix equations separately using a FOR loop? Good luck, Craig	 So i need to solve the system using LUDC and LUSOL, but i have to do it 221 times (ie a solution for each 'layer' of the matrices)
First of all, IDL can do up to eight dimensions. Since you mention the notation [[a,b,]], you are probably not getting the syntax exactly right. It doesn't really matter though. If you really have a 3094 x 14 matrix, it is straightforward to use REFORM to make that 221x14x14 matrix (ie, matrix = reform(matrix,221,14,14)) I am pretty sure that LUDC/LUSOL will not handle a "3-d" matrix. Can your solution be applied component by component? I.e., can you solve each of the 221 14x14 matrix equations separately using a FOR loop? Good luck, Craig	 The first question is, is there a way to declare the two input arrays as 3-d? I tried defining the matrix using matrix=[[a,b,],[,]] etc] where a,b, = arrays, but this isn't recognised as a 14 x14 square matrix which is 221 elements 'deep'. Instead, it expands each array across the row, making it a 3094 x 14 matrix. (it needs to be square to run LUDC)
your solution be applied component by component? I.e., can you solve each of the 221 14x14 matrix equations separately using a FOR loop? Good luck, Craig Craig B. Markwardt, Ph.D. EMAIL: craigmnet@cow.physics.wisc.edu	First of all, IDL can do up to eight dimensions. Since you mention the notation [[a,b,]], you are probably not getting the syntax exactly right. It doesn't really matter though. If you really have a 3094 x 14 matrix, it is straightforward to use REFORM to make that
	your solution be applied component by component? I.e., can you solve
	Craig B. Markwardt, Ph.D. EMAIL: craigmnet@cow.physics.wisc.edu Astrophysics, IDL, Finance, Derivatives Remove "net" for better response