Subject: Re: 3d matrices and LUSOL Posted by the cacc on Thu, 24 Jan 2002 23:22:30 GMT

View Forum Message <> Reply to Message

```
"M" <mrmanish@bigfoot.com> wrote in message news:<a2pj2t$jv8$1@yarrow.open.ac.uk>...
> Hi all,
>
> I am in desperate need of help!!
> I have a set of linear equations represented as matrix arrays which need to
> be solved using the LU decomposition technique. The two arrays consist of a
> 14 x 14 array, and a 14 x 1 array, but each element in the matrices itself
> is an array of 221 elements (ie the matrices are 3dimensional...?)
>
> So i need to solve the system using LUDC and LUSOL, but i have to do it 221
> times (ie a solution for each 'layer' of the matrices)
>
The first question is, is there a way to declare the two input arrays as
> 3-d? I tried defining the matrix using matrix=[[a,b,..],[...,....] etc]
> where a,b,... = arrays, but this isn't recognised as a 14 x14 square matrix
> which is 221 elements 'deep'. Instead, it expands each array across the
> row, making it a 3094 x 14 matrix. (it needs to be square to run LUDC)
  Is there a way i can force IDL to see it as a 'layered' 3-d matrix?
>
> What i need to achieve is a 3 dimensional 14 x 1 solution array, again 221
> elements 'deep'. To get this, could i simply run LUDC and LUSOL as normal
> provided the inputs are 3d matrices, or do i need to somehow loop the
> procedures so it produces solutions one 'layer' at a time and builds them
> into the 3 d solution matrix?
> I don't know if anyone has any idea of what i'm talking about, but i only
> just understand it myself!!
> Apologies if it makes no sense whatsoever, suffice to say i'm a little
> confused right now!
>
>
> Any insight into the above would be great,
>
> thanks,
> Manish.
Hi,
From what you say, it sounds like you want to be solving the 14x14
```

problem 221 times, ie.

For the first 14x14 matrix (A1) and 14x1 vector (b1), solve for x1: x1 = INVERT(A1) ## b1

Then for the second case: x2 = INVERT(A2) ## b2

and so on 221 times. You'll then have 221 14x1 vectors x1,x2,... which together give a 2D matrix (221x14).

Is this what you were expecting as your answer? If so, then yay! If not, I haven't understood the problem:(

Of course, you can define the individual matrices in larger matrices, ie. A = FLTARR(14,14,221), b = FLTARR(14,221) and x = FLTARR(14,221) then loop as follows:

FOR i = 0, 220 DO x[*,i] = INVERT(A[*,*,i]) ## b[*,i]

NOTE: using LUDC and LUSOL directly is slightly faster than using INVERT, but you may prefer INVERT initially since it makes the code simpler.

Ciao.