
Subject: Re: prime factors (was Re: All day FFT....)
Posted by Robert Stockwell on Sat, 09 Feb 2002 00:14:05 GMT
View Forum Message <> Reply to Message

NICE! blows the doors off factors().

You know, the biggest integer 2ull^64 only
can have a factor of up to sqrt(2ull^64) 4,294,967,296, so
one can make a complete table of primes. That would be smokin!

Check out:
 http://primes.utm.edu/links/lists_of_primes/small_primes/fir st_n_primes/

There is a link to the first 98 millin primes.
Sure the prime_factors.pro file may be a bit large,
but disk space is cheap.

Cheers,
bob

PS
Let me guess, you tested your function under Win2000 on
your dual boot machine, and Martin's under Linux. :)

PPS has anyone coded up the Multiple Polynomial Quadratic Sieve integer
factorization algorithm for IDL?

Brian Jackel wrote:

> Hi Bob, Martin
>
> Here's my contribution to the prime number wars.
> Not recursive, I'm afraid.
>
> A single benchmarks shows it as being 10% faster
> than Martin's code. Your mileage may vary.
>
> IDL> num= 124123L*7L*3L*5L & st= systime(1) & for indx=0,9999 do dummy=
> ifactors(num) & print,systime(1)-st
> 6.6720001
> IDL> num= 124123L*7L*3L*5L & st= systime(1) & for indx=0,9999 do dummy=
> prime_factors(num) & print,systime(1)-st
> 5.5940000

Page 1 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4083
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=15086&goto=29229#msg_29229
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=29229
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>
> ;All bug reports cheerfully accepted
>
> ;Brian Jackel
>
> ;bjackel@phys.ucalgary.ca
>
> ;+
>
> ; NAME: Prime_Factors
>
> ;
>
> ; PURPOSE: This function accepts a single (scalar) value, and returns a
>
> ; vector containing all the prime factors of that value. This
> is
>
> ; useful for seeing if FFT's will be fast, or reducing
> fractions.
>
> ;
>
> ; CATEGORY: Math
>
> ;
>
> ; CALLING SEQUENCE: Result= PRIME_FACTORS(Value)
>
> ;
>
> ; INPUTS: Value a scalar byte, integer, or long integer value.
>
> ;
>
> ; KEYWORDS: SORT if set, then the result will be sorted in increasing
>
> ; order. Otherwise, factors may be scattered in no
>
> ; particular order.
>
> ;
>
> ; UNIQUE if set, then the result will only contain one of each
>
> ; factor ie. multiple occurances will be removed. This
>

Page 2 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> ; is done using the library function UNIQ. Note that
>
> ; this requires SORTing.
>
> ;
>
> ; OUTPUTS: The result of this function will be a vector containing all
>
> ; prime factors of the input value. If the input value is
>
> ; prime, then the result will have only one element, equal
>
> ; to the input.
>
> ;
>
> ; RESTRICTIONS: Fastest if no prime factor is greater than 97, quite
> slow
>
> ; after that, approximately order(sqrt(N)), where N is the
>
> ; largest prime factor.
>
> ;
>
> ; Only works for positive numbers.
>
> ;
>
> ; PROCEDURE: Do a fast search for all primes up to 97, then slowly loop
>
> ; through the rest (if any).
>
> ;
>
> ; EXAMPLES:
>
> ;
>
> ;IDL> test=PRIME_FACTORS(1L) & PRINT,test
>
> ; 1
>
> ;
>
> ;IDL> test=PRIME_FACTORS(5414145L) & PRINT,test
>
> ; 3 5 11 19 11 157

Page 3 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> ;
>
> ;IDL> test=PRIME_FACTORS(5414147L) & PRINT,test
>
> ; 5414147
>
> ;
>
> ; MODIFICATION HISTORY:
>
> ; 	Written February 14 1995, Brian Jackel, University of Western Ontario
>
> ; September 3 1995 Bjj Increased the list of primes to 97, improved
> the dumb
>
> ; loop considerably: O(n) to O(sqrt(n)/2)
>
> ; Screened input better, added /SORT and /UNIQUE
>
> ;-
>
>
>
>
>
> FUNCTION PRIME_FACTORS,value,SORT=sort,UNIQUE=unique
>
>
>
> IF (N_PARAMS() LT 1) THEN MESSAGE,"Error- this function requires a
> scalar input parameter"
>
> IF (N_ELEMENTS(value) GT 1) THEN MESSAGE,"Error- this function only
> accepts scalar input"
>
> IF (value EQ 0) THEN BEGIN
>
> MESSAGE,'Warning- input value was zero ',/INFORMATIONAL
>
> RETURN,[0L]
>
> ENDIF
>
> IF (value LT 0) THEN MESSAGE,'Warning- input value was
> negative',/INFORMATIONAL
>
>

Page 4 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> IF ((value - LONG(value)) NE 0) THEN BEGIN
>
> MESSAGE,"Warning- Value should be an integer, but is
> "+STRING(value),/INFORMATIONAL
>
> RETURN,[1L]
>
> ENDIF
>
>
>
> work= ABS(value) ;make a working copy
>
> factors= value/work ;1 (or maybe -1) is always a factor, albeit a
> trivial one
>
>
>
> ;
>
> ;For this first bit we just have a list of prime numbers (up to 97),
>
> ;and check if "work" is divisible by any of them. If so, make a note
>
> ;of it, and divide "work" by the appropriate factors. Repeat until
>
> ;"work" is no longer divisible by anything in the list. This either
>
> ;means that we've got all the factors, or the remaining ones are
>
> ;larger than 97.
>
> ;
>
> some_primes=
> [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73, 79,83,89,97]
>
>
>
> REPEAT BEGIN
>
> w= WHERE((work MOD some_primes) EQ 0 ,nw) ;see if any
> thing in the list matches
>
> IF (nw GT 0) THEN BEGIN
>
> some_primes= some_primes(w) ;throw away

Page 5 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> everything but the prime factors
>
> factors= [factors,some_primes]
>
> temp= some_primes(0)
>
> FOR indx=1,nw-1 DO temp=temp*some_primes(indx)
>
> work= work/temp ;divide the
> working value by all prime factors
>
> ENDIF
>
> ENDREP UNTIL (nw EQ 0)
>
>
>
> ;
>
> ;At this point we've found all the prime factors up til 97.
>
> ;Not having any better idea, I'll just keep trying to divide "work"
>
> ;by larger and larger numbers, until I've removed all the factors,
>
> ;or the Universe ends.
>
> ;
>
> ;Really, we should only be trying to divide by prime numbers, but if
>
> ;I had a quick way to test the primeness of numbers I'd be rich and
>
> ;famous by now.
>
> ;
>
> ;Note, however, that even numbers aren't prime, so we can halve the
>
> ;search space by concentrating only on odd numbers. We really should
>
> ;also ignore anything that ends in 5, but that actually slows things
>
> ;down a bit. Ideally we would use a base 6 number system, which would
>
> ;allow us to ignore 2/3 of the numbers instead of 1/2 or 6/10.
>
> ;

Page 6 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> ;Also, we can only have to search up to SQRT(work), which changes the
>
> ;time from O(n) to O(sqrt(n)), a significant improvement.
>
>
>
> upper_limit= FIX(SQRT(work) + 1) ;highest number to check, about
> SQRT(2^31)=45000, so worst case should still be pretty fast
>
> current_try= 101L
>
> WHILE (current_try LT upper_limit) DO BEGIN
>
>
>
> IF ((work MOD current_try) EQ 0) THEN BEGIN
>
> nfactors= 0
>
> REPEAT BEGIN
>
> work= work / current_try
>
> nfactors= nfactors+1
>
> ENDREP UNTIL (work MOD current_try) NE 0
>
> factors= [factors, REPLICATE(current_try,nfactors)]
>
> upper_limit= FIX(SQRT(work) + 1)
>
> ENDIF
>
>
>
> current_try= current_try + 2L
>
>
>
> ENDWHILE
>
>
>
> ;At this point, if "work" isn't 1, then it must be prime.
>
> ;Also, throw away the first element in "factors" (was a
>

Page 7 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> ; dummy 1) unless the input value was simply 1.
>
> ;
>
> IF (work NE 1) THEN factors= [factors,work] ;anything left at this
> point must be a prime
>
> IF (value NE 1) THEN factors= factors(1:*)
>
>
>
>
>
> IF KEYWORD_SET(SORT) OR KEYWORD_SET(UNIQUE) THEN factors= factors(
> SORT(factors))
>
> IF KEYWORD_SET(UNIQUE) THEN factors= factors(UNIQ(factors))
>
>
>
>
>
> RETURN,factors
>
> END
>

Page 8 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

