Subject: Re: Matrox Framegrabber interface
Posted by peter.mason on Mon, 11 Feb 2002 21:43:30 GMT

View Forum Message <> Reply to Message

"Gert Van de Wouwer" <Gert.VandeWouwer@NOSPAMua.ac.be> wrote...

> | need to interface a camera via a Matrox framegrabber that comes with a

> c-library to grab images, and | want to use these functions through a dll.

> The documentation specifies that the memory in which the image is grabbed
> must be in non-paged memory. To do this, | see two possibilities:

> 1) allocate memory in IDL, go to my dll, and specify that the grabber should
> use the IDL-allocated memory. But hoz can | make sure that this memory is
> non-paged?

> 2) go to my dll, use the Matrox lib's memory allocation function, and use

> this memory in IDL. But how can | return this memory in a valid IDL member.
>
>
>
>

Off course, the easy way is: allocate IDL memory, go to my dll, allocate the
Matrox memory, grab image, copy image data to the IDL memory, destroy matrox
mem, return.... But since the acquisition is a time critical step...

Hi Gert,

Are you sure that copying the frame to an IDL variable is a serious
overhead compared to what you're doing with it on the IDL side?
E.g., If you're displaying the frame or saving it to disk then I'd be
surprised if a memory copy was all that noticeable.

But given that it is important for you to reduce run-time...

| haven't done frame-grabber work myself but | think that you should
be able to "lock" IDL-allocated memory (prevent it from being paged)
by using the win32 function VirtualLock(). This function has two
parameters, viz. success = VirtualLock(start_byte address,
number_of bytes).

Once you're done frame-grabbing you should call VirtualUnlock(
start_byte address, number_of bytes).

VirtualLock() doesn't let you lock a large block of memory by default.

(The default limit is something pathetic like 120 KBytes.) If the
region that you want to lock is too large for its liking - as it
probably is here - then (before locking) you'll have to bump up your
working-set size using the Win32 function success =
SetProcessWorkingSetSize(process_handle, min_size, max_size).
You'll need power-user or administrator privilege to use this
function. You can use the win32 function GetCurrentProcess() to get
that process handle, and you should use the function success =
GetWorkingSetSize(process_handle, min_size_ptr, max_size_ptr) to get

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4056
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=15115&goto=29291#msg_29291
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=29291
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

the working-set size before you clobber it.

| expect that you'll be writing wrapper functions in C? This will

give you the chance to set things up and wind them down. e.g., Write
a setup call that gets the current working-set size (for restoring

when you're done), boosts the working set and locks the IDL array that
you'll be using, and write a wind-down call that unlocks and restores
the working-set size.

Remember to be very careful not to change the locked IDL variable on
the IDL side while it is locked. [I'll repeat something that Mark

Rivers wrote about this sort of thing: never use the variable on the
left-hand side of an expression. Doing so will typically make IDL

try to reallocate it.

HTH,
Cheers
Peter Mason

Page 2 of 2 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

