Subject: Re: Need Some Good Ideas Posted by Martin Downing on Thu, 21 Feb 2002 22:35:30 GMT View Forum Message <> Reply to Message

Hi David.

refering to your gateway blobs:

if thats what you have then they are easy to segment, you then identify each individual blob using region labeling

now for each blob:

- 1. identify the boundary (this should be as a [x,y] array of every boundary pixel (no long sides)- as either an internal or external boundary
- 2. transform the array to [s,theta], where s[i] is the cumulative distance along the boundary to P[i] and theta[i] is the angle of the link of P[i-1] from P[i] relative to (say) the X axis
- 3. [s,theta] will be periodic, (i.e. you could carry on going round and round), so you can now run a FFT or calculate the first fourier descriptors of it - see reference

good luck - I spend rather too much time playing with this kind of stuff!

Martin

Reference List

1. Lin, Chellappa R. Classification Of Partial 2-D Shapes Using Fourier Descriptors. IEEE Transactions On Pattern Analysis And Machine Intelligence 1987; 9:686-690

Martin Downing, Clinical Research Physicist, Grampian Orthopaedic RSA Research Centre, Woodend Hospital, Aberdeen, AB15 6LS.

m.downingATabdn.ac.uk

"David Fanning" <david@dfanning.com> wrote in message news:MPG.16de0d88b1cdeb82989813@news.frii.com...

> Folks.

>

- > > Do you have your thinking caps on? I'm looking for
- > a few good ideas.
- > I have a bunch of blobs. (Think spots on the
- > Gateway cow.) I would like to analyze the curvature
- > and bends in the perimeter of the blobs. I have
- > the indices of the points that make up the blob, and

- > I have obtained the "perimeter" points by contouring
- > the blob. Unfortunately, these perimeter points are
- > not evenly distributed. (Think of a blob that has a
- > long, straight side. The contour command will put a
- > point at either end of the straight bit, so the points
- > on that side of the blob are sparse, while the points
- > along a tight bend on the other side of the blob
- > are dense.)

>

- > I say "unfortunately" because we have a method that
- > uses the derivative of the perimeter at each point
- > and the FFT transform of the derivative distribution,
- > but it seems to be giving funny results because of this
- > point distribution problem.

>

- > Has anyone heard of this kind of curvature analysis
- > before? Any pointers to literature? I've heard that
- > IDL can be used to solve these kinds of problems. :-)

>

> Thanks,

>

- > David
- > --
- > David W. Fanning, Ph.D.
- > Fanning Software Consulting
- > Phone: 970-221-0438, E-mail: david@dfanning.com
- > Coyote's Guide to IDL Programming: http://www.dfanning.com/
- > Toll-Free IDL Book Orders: 1-888-461-0155