
Subject: Re: Need Some Good Ideas
Posted by btupper on Thu, 21 Feb 2002 18:43:21 GMT
View Forum Message <> Reply to Message

> I have a bunch of blobs. (Think spots on the
> Gateway cow.) I would like to analyze the curvature
> and bends in the perimeter of the blobs. I have
> the indices of the points that make up the blob, and
> I have obtained the "perimeter" points by contouring
> the blob. Unfortunately, these perimeter points are
> not evenly distributed. (Think of a blob that has a
> long, straight side. The contour command will put a
> point at either end of the straight bit, so the points
> on that side of the blob are sparse, while the points
> along a tight bend on the other side of the blob
> are dense.)

Hi,

I have stumbled over this ground before. I use the FillIn_Contour
function pasted in below. It's pretty typical of my brute force
technique for doing geometery with IDL.

While we are on the subject of contouring, I recall that a call to
CONTOUR with the Path_XY keyword set to retrieve the vertex pairs will
change the direct graphics plot scaling. A call to CONTOUR with the
OverPlot keyword set does not change the plot scaling. I *always*
forget that Contour does this when someone signing my paycheck is
looking over my shoulder. I show an example of this in the
FunnyContour procedure below.

Ben

;*******START EXAMPLE HERE

PRO FunnyContour

TVLCT, R, G, B, /get

Img = BytArr(100,100)
Img[25:75,25:75] = 1
Img = Rot(Img, 30)
Img[0:50, *] = 0

LoadCT, 0, bottom = 32

Page 1 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4197
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=15175&goto=29429#msg_29429
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=29429
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Tek_Color
ImDisp, Img, /no_Scale, /Axis, /Erase
Print, 'XS after plot ', !X.S

	;save these for later
XS = !X.S
YS = !Y.S

;contour directly to the display - shown in red
Contour, Img, levels = [1], c_color = 2, /over
Print, 'XS after contour to display ', !X.S

;contour directly to the output keywords show in green
Contour, Img, levels = [1], Path_XY = xy, /Path_Data_Coord
Print, 'XS after contour to path_xy ', !X.S
oPlot, XY[0,*], XY[1,*], color = 3, psym = 1

;restore the plotting parameters
;and show the results in blue
!X.S = XS
!Y.S = YS
oPlot, XY[0,*], XY[1,*], color = 4, psym = 2

	;pad in the missing pixel locations
	;show these in orange
newXY = FillIn_Contour(XY)
oPlot, newXY[0,*], newXY[1,*], color = 8, psym = 5

TVLCT, R, G, B

END

;*******END EXAMPLE HERE

;**********ANOTHER START HERE
;+
; NAME:
;	FillIn_CONTOUR
;
; PURPOSE:
;	Given the XY data path coordinates returned
;	from a call to CONTOUR using
;	an image, this routine returns ALL of the pixels
;	coordinates that lie along the contour.
;

Page 2 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; CATEGORY:
;	Image analysis.
;
; ARGUMENTS:
;	XY A 2xn element array of contour vertices returned
;		by the CONTOUR routine	keyword PATH_XY.
;	DELTA A one or two element vector of the 'pixel'
;	size in the x and y directions. By default [1,1] is used.
;
; RETURNED:
;	A 2xm element array of the coordinates of all
;	the pixels/cells that lie along the	path.
;	The first point and last are the not the same.
;
; EXAMPLE:
;	;make an image
;	img = BytArr(250,250)
;	Img[50:200, 50:200] = 1
;	Tek_color
;	TV, Image
; CONTOUR, img, Path_XY = XY,
;		/Path_Data_Coord, Levels = [1]
;		;only 4 vertices (since the 'island' is a rectangle
;	plots, XY[0,*], XY[1,*], psym = 6, color = 2, /dev
;		;get all the pixels
; newxy = filin_contour(xy)
;		;show the new points
;	plots,newXY[0,*], newXY[1,*], psym = 3, /dev, color = 3
;
; MODIFICATION HISTORY
;	18 JUNE 2001 Written by Ben Tupper.
;-

FUNCTION FillIn_Contour, XY, delta

	;establish the step size
Case n_elements(Delta) of
	0: d = [1.0,1.0]
	1: d = [float(delta),delta]
	Else: d = Float(Delta[0:1])
EndCase

d = ABS(d)
neg_d = 0.0 - d

;convert original array into 'wrapped' vectors
oX = [Reform(XY[0,*]), XY[0,0]]
oY = [Reform(XY[1,*]), XY[1,0]]

Page 3 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

	;seed the new xy paring
X = Ptr_new(oX[0])
Y = Ptr_New(oY[0])

	;step through the original verticies, padding the
	;'new' vertices as needed
	
i = 1L	& newCount = 1L
While i lt n_elements(oX) do begin

		;get the x and y displacements
	dx = oX[i] - (*X)[newCount-1]
	dy = oY[i] - (*Y)[newCount-1]
	
	Case 1 of
	
			;in this case the next vertex in origianl set
is more than
			;one pixel away
		ABS(dx) GT d[0] OR ABS(dy) GT d[1]: Begin
	
		*X = [*X,(*X)[newCount-1] + (neg_d[0] > dx < d[0])]
		*Y = [*Y,(*Y)[newCount-1] + (neg_d[1] > dy < d[1])]
				;the newCount will be incremented, but
not the
				;counter for the old set
			newCount = NewCount+1

		End	;big gap to be filled in
	
		;in this case we have arrived at a vertex... so simply

		;move on to the next vertex in the original data set
	dx EQ 0 AND dy EQ 0: i = i+1
	
		;in this case the next vertex is the one form the
original data set
	Else: Begin
	
		*X = [*X, oX[i]]
		*Y = [*Y, oY[i]]
			;move on to the next vertex
		i = i + 1
		NewCount = NewCount + 1		
		End
	
	EndCase

Page 4 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

EndWhile

	
NewXY = $
	transpose([[(*X)[0: newCount-2]],[(*Y)[0: newCount-2]]
])
ptr_free, X,Y

Return, NewXY
END
;*********ANOTHER END HERE

Page 5 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

