
Subject: Re: rebin question
Posted by Jonathan Joseph on Mon, 25 Mar 2002 22:24:27 GMT
View Forum Message <> Reply to Message

Hi JD,

Now that you are no longer conveniently located, I wonder which takes
more of your time:  The old going down to your office and getting an
explanation from you directly, or posting to this group and you
constructing a detailed response :)  I guess this way everyone gets
the benefit of your words of wisdom.

-Jonathan

JD Smith wrote:
>  
>  Jonathan Joseph wrote:
>> 
>>  It looks nice doesn't it, and I did write a procedure for the simple
>>  case of averaging, but it's not as clean cut as you indicate:
>> 
>>  1. first one needs to get the type of the incoming image - you don't
>>     want to round the result of a floating point type image - that
>>     would give you the wrong result.
>> 
>>  2. conversion should be done to double precision floating point
>>     (not float) otherwise large long integers will lose precision.
>>     loss of precision for large L64 integers will occur even with
>>     conversion to double, so they can't be handled properly at all.
>  
>  Hi JJ,
>  
>  Since you couldn't walk down the hall to bug me... ;)
>  
>  This argument is a bit off.  When you work in integer precision, all
>  operations occur as integer arithmetic.  Thus, your original rebin
>  example of (5+5+5+5+4)/5=24/5=4 is an exactly correct integer
>  calculation.  REBIN doesn't "averages the pixels, but then instead of
>  rounding to the nearest integer, simply take the integer part of
>  the average", it performs arithmetic at the precision of its inputs.
>  Integer arithmetic truncates, not rounds (try print,4/5).  You seem to
>  want REBIN to switch back and forth between numeric types (in the way
>  you could do with float() and int()).
>  
>  A better illustration is:
>  
>  IDL> print,rebin([[4LL],replicate(5LL,4)],1)
>                       4

Page 1 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2764
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7309&goto=29876#msg_29876
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=29876
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


>  IDL> print,total(replicate(10000000000000000000ULL,1))
>     1.0000000e+19
>  IDL> print,total(replicate(10000000000000000000ULL,2))
>     1.5532559e+18
>  IDL>   print,rebin(replicate(10000000000000000000ULL,2),1),format=' (G)'
>      7.766279631452242E+17
>  
>  Uhh ohh, overflow, but:
>  
>  IDL>  print,rebin(double(replicate(10000000000000000000ULL,2)),1),
>          format='(G)'
>      1.000000000000000E+19
>  
>  OK, that worked, now how about:
>  
>  IDL>  print,rebin(double(replicate(10000000000000000002ULL,2)),1),
>          format='(E30.22)'
>    1.0000000000000000000000E+19
>  
>  Hmm, we lost that 2: insufficient precision rearing it's ugly head.
>  
>  All of these are also using correct (Long-64) integer arithmethic.  The
>  fact that you can't average together large 64-bit numbers without loss
>  of precision is not a problem with rebin, but with the number
>  representation itself.  There simply isn't a big enough floating point
>  type into which to fit this huge integer without loss of precision, and
>  "rounding" is not a defined operation on integer types (if it were, we
>  wouldn't need floats!).
>  
>>  3. need to convert back to the proper type, so your solution
>>     should be wrapped by a fix(..., type=type)
>> 
>>  4. instead of a rebin, there is now a rebin, two type conversions
>>     and a round, which will slow things down and use more memory.
>> 
>  
>  Yes, but these are all essential in your scheme.  There's no free
>  lunch.  If you'd prefer REBIN to handle all this type conversion itself,
>  it would be hidden from you, but would still suffer the same
>  speed-penalty.
>  
>  Confer the behavior of total(), which automatically upconverts
>  everything to float() or double(), to avoid overflow (curiously, it
>  didn't quite succeed in one of the examples above).  REBIN could do the
>  exact same thing, in the exact same way, but I for one am glad it
>  doesn't.  Sometimes I *want* integer arithmetic.
>  
>>  So, it is a hassle.

Page 2 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


>  
>  Think of it as an opportunity.
>  
>>  But yes, it's still not difficult to write a function to handle the
>>  SIMPLE case of averaging for CERTAIN data types.  But that does not
>>  help with the problem of writing a more general function that handles
>>  downsampling using median or downsampling using a mean excluding
>>  outliers (pixels with values far from the mean) or downsampling using
>>  your favorite method. Doing this quickly in IDL means doing it
>>  w/o loops, so while conceptually the problem is not difficult, it
>>  does seem somewhat more difficult to do it properly in IDL.
>  
>  We had a discussion on just this a week or so ago.  I have a DLM called
>  "reduce" which does single-dimension reduction, ala
>  total(array,dimension), but with your choice of method
>  (max/min/median/mean/clipped mean/etc.).  This could be generalized
>  quite easily to two different swiss-army tools:
>  
>  1.  A smooth/convol-equivalent (preserve size, apply filter).
>  2.  A rebin-equivalent (reduce size).
>  
>  In fact, a single tool could probably do all three at once.  Of course,
>  DLM's are a hassle.
>  
>>  Anyone out there thought about this problem before?
>  
>  I think people have pushed up against this problem thorughout the
>  history of computing. Usually it's best to spend time reviewing how
>  computers store and manipulate integers and floats.  While it is
>  certainly possible to write code which handles arbitrary precision, the
>  tremendous operational overheads of these schemes would have you
>  screaming for your fixed-width ints and floats.  It's a tradeoff between
>  speed and flexibility, and it's one we have to work around.
>  
>  JD
>  
>> 
>>  Vince wrote:
>>> 
>>>  print, round(rebin(float([5,5,5,5,4]),1))
>>> 
>>>  Hassle?
>>> 
>>>  Maybe you could write a function.  Which leads me to a new question:
>>> 
>>>  Is it possible to define a function or procedure in IDL that can take
>>>  an arbitrary number of arguments, e.g.:
>>> 

Page 3 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


>>>  function my_rebin, a, arg1, arg2, ...
>>> 
>>>          return, round( rebin( float(a), arg1, arg2, ... ) )
>>>  end
>>> 
>>>  On Fri, 22 Mar 2002 11:58:41 -0500, Jonathan Joseph <jj21@cornell.edu>
>>>  wrote:
>>> 
>>>> I figured I would use rebin to downsample an image by averaging the
>>>> pixels in blocks of specified size.  What I discovered, was that for
>>>> integer type images, rebin averages the pixels, but then instead of
>>>> rounding to the nearest integer, simply takes the integer part of
>>>> the average.  Hence:
>>>> 
>>>> print, rebin([5,5,5,5,4], 1)
>>>> 
>>>> gives the result of 4, not 5 which is what I would like.  I suppose
>>>> this is done for speed - to work around the problem, I need to convert
>>>> to a floating point type, do the rebin, then round, then convert back
>>>> to the proper integer type - a hassle.
>>>> 
>>>> But, I would really like a more generic way of doing downsampling
>>>> of this sort, without the high overhead of a loop.  Apart from
>>>> taking the mean of a block of pixels, I would also like the option
>>>> of downsampling using the median of a block of pixels, or using the
>>>> mean of a block of pixels disregarding the farthest outlier (or
>>>> n outliers).
>>>> 
>>>> Has anyone written IDL code to do downsampling in a more generalized
>>>> way than rebin, or have any clever ideas about how to do it quickly?
>>>> 
>>>> Thanks

Page 4 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

