Subject: Re: about label regions Posted by Xiaoying Jin on Tue, 07 May 2002 05:53:42 GMT View Forum Message <> Reply to Message

Thanks for your suggestion.

That's what I want to do. I previously thought of this kind of method (label region after edge detection), but using the normal edge detection we can not localize the edge to one pixel wide. I think your suggestion is very helpful. I will try that.

Besides, what is the funciton "Distance"?

Regards,

Xiaoying Jin

"Ted Cary" <tedcary@yahoo.com> wrote in message news:3CD71905.25D5A98D@yahoo.com...

Thanks for your suggestion.

- > If the gray levels of the regions are fairly uniform, do some type of edge
- > detection. Mask anything that is not an edge, then you will have a mask of
- > only region interiors. This mask is a bi-level image that you can analyze with
- > one call to LABEL_REGION.

>

- > For edge detection of regions of uniform gray level, you might try a grayscale
- > analog of a gradient morph to find the margins. Try something like this for
- > your image:

>

- > rad = 1; Radius of structuring element. Change for fatter margins.
- > disk = Shift(Distance(2*rad+1), rad, rad) LE rad; Create a disk structuring
- > element.
- > imageDilated = Dilate(image, disk, /GRAY); Dilate the image with the disk.

>

> wh = Where(image NE imageDilated); Find subscripts of margins.

- marginMask = image; Just create another image of same size as original.
- > marginMask[*] = 255; Pretend everything is in the interior.
- marginMask[wh] = 0; Set margins to 0. >

> If you TVSCL the marginMask, you should see all regions of white with black

> borders. This is a bi-level image that can be used with LABEL_REGION. > > The disadvantage of this technique is that "brighter" region margins will > intrude by one pixel into dimmer regions because of the dilation, but at least > it illustrates the method. Keep in mind that this assumes your regions are each monotone, as stated in the original post. > > Good luck, > > TC > > >

>