Subject: Object programming with data...
Posted by Randall Skelton on Sat, 18 May 2002 12:15:04 GMT

View Forum Message <> Reply to Message

Hi all,

| think | have found a bug in the IDL object programming interface which

may help explain why there are no IDL object programming books. While IDL
claims to support methods, there appears to be no mechanism for operator
overloading!?!! Pardon my ignorance, but in a scientific programming
language, what is the point supporting data encapsulation without operator
overloading?

For those who have no idea what | am talking about, imagine | have a
measurement that comprises two pieces of information. In this case the
first variable is a string that describes the location of the measurement
and the second variable is numeric vector or matrix of data. Surely |
could store each piece of information separately but it makes a little
more sense to store the two pieces of information in a structure. Itis
only a small leap to say that rather than having this be an IDL structure,
it might be easier to make an IDL object. This way, | can benefit from
the ability to define method routines that act directly on the data | have
encapsulated.

a = obj_new('oop’, 'test’, randomu(seed,10))
b = obj_new(‘oop’, 'test2’, randomu(seed,10))

a->summary

OOP Type: test

OOP Data:

0.624530 0.377744 0.539190 0.316347 0.976563 0.792964
0.534616 0.138174 0.282342 0.907329

As a logical next step, | would like to be able to act directly on these
objects with an operator. Perhaps, | would like to add them together.

This seems straightforward enough, obviously it doesn't make sense to add
the string variables but adding the data vectors seems straightforward.

IDL> print, a+b
% Operation illegal with object reference types.
% Execution halted at: $SMAINS$

Surely there must be a way to add these variables and in most object
oriented languages this is termed object overloading. | want to redefine
the '+' sign so that IDL understands that when | write 'a + b’ | really
mean that | want to add the two data vectors (and possibly adjust the
string to reflect that this is neither a nor b anymore). About the only
way that you can do this in IDL is to define an 'add’ function.

Page 1 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3691
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=15749&goto=30869#msg_30869
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=30869
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

IDL> ¢ = add(a,b)

IDL> c->summary

OOP Type: test+test2

OOP Data:

1.45955 1.11524 0.702109 1.06542 1.13524 1.67752
1.38169 0.799619 0.759985 0.953860

Sadly, life gets more complicated when you want to add more than two
things together...

IDL> g = add(f,add(e,add(d,add(c,add(a,b)))))

Surely I must be missing some critical manual that describes the
undocumented features of operator overloading. What | want to be able to
write is:

IDL> g = at+b+c+d+e+f

We can talk about Methods, polymorphism, inheritance and persistence until
we are all blue in the face, but without the ability to define operator
methods the usefulness of IDL in programming with data is rather limited.

Any and all suggestions/comments are welcomed!

Cheers,
Randall

-- File: add.pro --
Function add, a, b, Type=type

catch, theError

if theError ne 0 then begin
catch, /cancel
message, 'Error_State.Msg + ' Returning...", /info
return, -1

endif

if n_params() It 2 or size(a, /type) ne 11 or size(b, /type) ne 11 then $
message, 'Must pass two objects to add’, /noname

if obj_isa(a,'oop’) eq 0 or obj_isa(b,'oop’) eq 0 then $
message, 'Passed objects must be of class oop’, /noname

; keywords

if n_elements(type) ne 0 then begin
if size(type, /type) ne 7 then message, "Type must be a string’, /noname
ret_type = type

Page 2 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

endif else ret_type = a->GetType() + '+' + b->GetType()
ret_data = a->GetData() + b->GetData()

return, obj_new('oop’, ret_type, ret_data)
End

-- File: oop__ define.pro --

Function OOP::GetType
return, self.type
End

Function OOP::GetData
return, *self.data
End

Pro OOP::Summary, Extra=extra

print, 'OOP Type: ', self.type
print, 'OOP Data: '
print, *self.data, _Extra=extra

End

Pro OOP::Cleanup
ptr_free, self.data

End

Function OOP::Init, type, data

catch, theError

if theError ne 0 then begin
catch, /cancel
message, !'Error_State.Msg + ' Returning...", /info
return, -1

endif

if n_elements(type) eq 0 then $
message, 'Must give a type label', /noname

Page 3 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

if size(type, /type) ne 7 then $
message, 'Type must be a string’, /noname

if n_elements(data) eq 0 then $
message, 'Must give some data’', /noname

if size(data, /n_dimensions) gt 2 then $
message, 'Data must be either a vector or a matrix'

idx = where([2,3,4,5,6,9] eq size(data, /type))
if idx[0] eq -1 then message, 'Data must be numeric’

self.type = type
self.data = ptr_new(data)

return, 1

End

Pro oop__define

s={oop, $
type: ", $
data: ptr_new() $
}
End

Page 4 of 4 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

